Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T02:35:58.386Z Has data issue: false hasContentIssue false

Measuring the clustering of photometric quasars through blind mitigation of systematics

Published online by Cambridge University Press:  01 July 2015

Boris Leistedt
Affiliation:
Department of Physics and Astronomy, University College London, London WC1E 6BT, [email protected], [email protected], [email protected]
Hiranya V. Peiris
Affiliation:
Department of Physics and Astronomy, University College London, London WC1E 6BT, [email protected], [email protected], [email protected]
Nina Roth
Affiliation:
Department of Physics and Astronomy, University College London, London WC1E 6BT, [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present accurate measurements of the large-scale clustering of photometric quasars from the Sloan Digital Sky Survey. These results, detailed in Leistedt & Peiris (2014), rely on a novel technique to identify and treat systematics when measuring angular power spectra, using null-tests and analytical marginalisation. This approach can be used to maximise the extraction of information from current and future galaxy or quasar surveys. For example, it enables to robustly constrain primordial non-Gaussianity (PNG), which modifies the bias of galaxies and quasars on large scales – the most sensitive to observational systematics. The constraints on PNG obtained with the quasar power spectra are detailed in Leistedt, Peiris & Roth (2014); these are the most stringent constraints to date obtained with a single tracer of the large-scale structure.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Agarwal, N., Ho, S., Myers, A. D., Seo, H.-J., Ross, A. J.et al. 2014, JCAP 1404 007, arXiv:1309.2954Google Scholar
Bovy, J., et al. 2012, ApJ 749 41, arXiv:1105.3975Google Scholar
Dalal, N., Doré, O., Huterer, D., & Shirokov, A. 2008, Phys. Rev. D. 77 123514, arXiv:0710.4560Google Scholar
Giannantonio, T., Crittenden, R., Nichol, R., & Ross, A. J. 2012, MNRAS 426 2581, arXiv:1209.2125CrossRefGoogle Scholar
Giannantonio, T., Ross, A. J., Percival, W. J., Crittenden, R., Bacher, D., Kilbinger, M., Nichol, R., & Weller, J. 2014, Phys. Rev. D 89 023511, arXiv:1303.1349Google Scholar
Ho, S., et al. 2013, arXiv preprint, arXiv:1311.2597Google Scholar
Ho, S., et al. 2012, ApJ 761 14, arXiv:1201.2137Google Scholar
Karagiannis, D., Shanks, T., & Ross, N. P. 2014, MNRAS 441 486, arXiv:1310.6716Google Scholar
Leistedt, B. & Peiris, H. V. 2014, arXiv preprint, arXiv:1404.6530Google Scholar
Leistedt, B., Peiris, H. V., Mortlock, D. J., Benoit-Lévy, A., & Pontzen, A. 2013, MNRAS, 435, 1857, arXiv:1306.0005Google Scholar
Leistedt, B., & Peiris, H. V., & Roth, N. 2014, arXiv preprint, arXiv:1405.4315Google Scholar
LoVerde, M., Miller, A., Shandera, S., & Verde, L. 2008, ApJ (Letters) 4 14, arXiv:0711.4126Google Scholar
Matarrese, S. & Verde, L. 2008, ApJ (Letters) 677 L77, arXiv:0801.4826Google Scholar
Myers, A. D., Brunner, R. J., Richards, G. T., Nichol, R. C., Schneider, D. P., & Bahcall, N. A. 2007, ApJ 658 99, arXiv:arXiv:astro-ph/0612191Google Scholar
Planck Collaboration, 2013, arXiv preprint, arXiv:1303.5076Google Scholar
Pullen, A. R. & Hirata, C. M. 2013, PASP 125 705, arXiv:1212.4500Google Scholar
Richards, G. T., et al. 2009, ApJ (Supp.) 180 67, arXiv:0809.3952Google Scholar
Ross, A. J., et al. 2011, MNRAS 417 1350, arXiv:1105.2320Google Scholar
Ross, A. J., et al. 2012, MNRAS 424 564, arXiv:1203.6499Google Scholar
Xia, J.-Q., Baccigalupi, C., Matarrese, S., Verde, L., & Viel, M. 2011, J. Cosmol. Astropart. Phys. 8 33, arXiv:1104.5015Google Scholar
Xia, J.-Q., Viel, M., Baccigalupi, C., & Matarrese, S. 2009, J. Cosmol. Astropart. Phys. 9 3, arXiv:0907.4753Google Scholar