Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T11:32:21.175Z Has data issue: false hasContentIssue false

Measuring AGN Feedback Parameters From Seyfert Galaxy Outflows

Published online by Cambridge University Press:  21 March 2013

F. Müller-Sánchez
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, USA
M. Malkan
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, USA
E. K. S. Hicks
Affiliation:
University of Washington, Seattle, USA
R. I. Davies
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results of an on-going program to measure AGN feedback in Seyfert galaxies using integral-field spectroscopy and adaptive optics at Keck Observatory and VLT. Our integral-field observations are revealing AGN-driven outflows of ionized gas in Seyfert galaxies. By resolving the inner 10–40 parsecs, we are successfully modeling them as biconical structures, in which the ionized gas first accelerates and then decelerates. The model parameters provide crucial information on the orientation, geometry and kinematics of the outflows, which is used to estimate mechanical feedback from the AGN: mass and kinetic energy transferred to the interstellar medium. Mass outflow rates can be 102–104 times greater than accretion rates, but in some cases, they are comparable to the estimated inflow rates to the central 10–25 pc, suggesting that the outflows may remove a considerable amount of the infalling gas before it reaches the accretion disk. In half of the AGN measured so far, the kinetic energy of the outflows appears sufficient to provide the eagerly-sought AGN feedback invoked to explain fundamental galaxy properties such as the MBH − σ* relation (0.5–5 Lbol). The other AGN, which lack powerful outflows, also have weaker and more compact radio jets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Antonucci, R. 1993, ARAA, 31, 473CrossRefGoogle Scholar
di Matteo, T., Springel, V. & Hernquist, L. 2005, Nature, 433, 604Google Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9Google Scholar
Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko, Alexei V., Green, R., Grillmair, C., Ho, L. C., & Kormendy, J. 2000, ApJ, 539, 13CrossRefGoogle Scholar
Hopkins, P. F. & Elvis, M. 2010, MNRAS, 401, 7Google Scholar
Müller-Sánchez, F., Davies, R. I., Genzel, R., Tacconi, L. J., Eisenhauer, F., Hicks, E. K. S., Friedrich, S., & Sternberg, A. 2009, ApJ, 691, 749CrossRefGoogle Scholar
Müller-Sánchez, F., Prieto, M. A., Hicks, E. K. S., Vives-Arias, H., Davies, R. I., Malkan, M., Tacconi, L. J., & Genzel, R. 2011, ApJ, 739, 69Google Scholar
Müller-Sánchez, F., Malkan, M., & Hicks, E. K. S. 2012, ApJ, in prep.Google Scholar
Nicastro, F., Martocchia, A. & Matt, G. 2003, ApJ Letters, 589, 13Google Scholar
Silk, J., Rees, M. J. 1998, A&A, 331, L1Google Scholar
Springel, V., et al. 2005, MNRAS, 361, 776Google Scholar
Storchi-Bergmann, T., McGregor, P. J., Riffel, R. A., Simoes Lopes, R., Beck, T., & Dopita, M. 2010, MNRAS, 394, 1148CrossRefGoogle Scholar
Urry, C. M. & Padovani, P. 1995, PASP, 107, 803CrossRefGoogle Scholar
Westmoquette, M. S., Smith, L. J., Gallagher, J. S., Trancho, G., Bastian, N., & Konstantopoulos, I. S. 2009, ApJ, 696, 192Google Scholar
Westmoquette, M. S., Smith, L. J., & Gallagher, J. S. 2011, MNRAS, 414, 3719CrossRefGoogle Scholar