Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T15:22:39.307Z Has data issue: false hasContentIssue false

Massive star evolution revealed in the Mass-Luminosity plane

Published online by Cambridge University Press:  30 December 2019

Erin R. Higgins
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, N. Ireland Queen’s University of Belfast, Belfast BT7 1NN, N. Ireland Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA emails: [email protected], [email protected]
Jorick S. Vink
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, N. Ireland Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive star evolution is dominated by key physical processes such as mass loss, convection and rotation, yet these effects are poorly constrained, even on the main sequence. We utilise a detached, eclipsing binary HD166734 as a testbed for single star evolution to calibrate new MESA stellar evolution grids. We introduce a novel method of comparing theoretical models with observations in the ‘Mass-Luminosity Plane’, as an equivalent to the HRD (see Higgins & Vink 2018). We reproduce stellar parameters and abundances of HD166734 with enhanced overshooting (αov=0.5), mass loss and rotational mixing. When comparing the constraints of our testbed to the systematic grid of models we find that a higher value of αov=0.5 (rather than αov=0.1) results in a solution which is more likely to evolve to a neutron star than a black hole, due to a lower value of the compactness parameter.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Brott, I., de Mink, S. E., Cantiello, M., Langer, N., de Koter, A., Evans, C. J., Hunter, I., Trundle, C., & Vink, J. S. 2011, Astronomy & Astrophysics, 530, A115 CrossRefGoogle Scholar
Claret, A., & Torres, G. 2017, Astrophysical Journal, 849(1), 18 CrossRefGoogle Scholar
Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., Granada, A., Decressin, T., Hirschi, R., Frischknecht, U. & Charbonnel, C. 2012, Astronomy & Astrophysics, 537, A146 CrossRefGoogle Scholar
Higgins, E. R., & Vink, J. S. 2018, Astronomy & Astrophysics Google Scholar
Maeder, A., & Meynet, G. 2000, Annual Review of Astronomy & Astrophysics, 38(1), 143190 CrossRefGoogle Scholar
Mahy, L., Damerdji, Y., Gosset, E., Nitschelm, C., Eenens, P., Sana, H. & Klotz, A. 2017, Astronomy & Astrophysics, 607, A96 CrossRefGoogle Scholar
Markova, N., Puls, J., & Langer, N. 2018, Astronomy & Astrophysics, 613, A12 CrossRefGoogle Scholar
Martins, F., & Palacios, A. 2013, Astronomy & Astrophysics, 560, A16 CrossRefGoogle Scholar
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P. & Timmes, F. 2011, Astrophysical Journal Supplement Series, 192(1), 3 CrossRefGoogle Scholar
Sukhbold, T. & Woosley, S. E. 2014, Astrophysical Journal, 783, 10 CrossRefGoogle Scholar
Vink, J. S., de Koter, A. & Lamers, H. J. G. L.M. 2001, Astronomy & Astrophysics, 369(2), 574588 CrossRefGoogle Scholar
Weidner, C., & Vink, J. S. 2010, Astronomy & Astrophysics, 524, A98 CrossRefGoogle Scholar