Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T14:58:23.586Z Has data issue: false hasContentIssue false

Massive star clusters in high-redshift star-forming galaxies seen at a 100 pc scale thanks to strong gravitational lensing

Published online by Cambridge University Press:  31 March 2017

Miroslava Dessauges-Zavadsky
Affiliation:
Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Versoix, Switzerland
Antonio Cava
Affiliation:
Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Versoix, Switzerland
Valentina Tamburello
Affiliation:
Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Daniel Schaerer
Affiliation:
Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Versoix, Switzerland
Lucio Mayer
Affiliation:
Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Johan Richard
Affiliation:
CRAL, Observatoire de Lyon, Université Lyon 1, 9 Avenue Ch. André, 69561 Saint Genis Laval Cedex, France
Pablo G. Pérez González
Affiliation:
Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de CC. Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-resolution imaging reveals clumpy morphologies among z = 1 – 3 galaxies. Most of these galaxies are dominated by disk rotation, which led to conclude that the observed clumps are generated from disk fragmentation due to gravitational instability. Despite the kpc-scale resolution attained by the most advanced facilities and numerical simulations, these clumps are barely resolved at z > 1. Thanks to the stretching and magnification power provided by gravitational lensing, we reach the sub-kpc resolving power to unveil their physics. From our literature compilation of data, we show that without lensing there is a bias toward clumps with high masses and sizes. The high-redshift clumps identified in lensed galaxies have stellar masses 2 orders of magnitude lower and a median size of 250 pc. They resemble local star clusters observed in the most intensively star-forming galaxies. The clump masses and sizes observed in lensed galaxies agree with new simulations, which show that the Toomre instability criterion overestimates the clump masses by a factor of 5 – 6.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Adamo, A., Östlin, G., Bastian, N., et al. 2013, ApJ, 766, 105 CrossRefGoogle Scholar
Bastian, N., Gieles, M., Efremov, Y. N., et al. 2005, A&A, 443, 79 Google Scholar
Bolatto, A. D., Leroy, A. K., Rosolowsky, E., et al. 2008, ApJ, 686, 948 Google Scholar
Boley, A. C., Hayfield, T., Mayer, L., et al. 2010, Icarus, 207, 509 Google Scholar
Bournaud, F., Elmegreen, B. G., & Martig, M. 2009, ApJ, 707, L1 Google Scholar
Ceverino, D., Dekel, A., & Bournaud, F. 2010, MNRAS, 404, 2151 Google Scholar
Dekel, A., Sari, R., & Ceverino, D. 2009, ApJ, 703, 785 CrossRefGoogle Scholar
Dessauges-Zavadsky, M., Zamojski, M., Schaerer, D., et al. 2015, A&A, 577, 50 Google Scholar
Elmegreen, D. M., Elmegreen, B. G., Rubin, D. S., et al. 2005, ApJ, 631, 85 Google Scholar
Elmegreen, B. G., Elmegreen, D. M., Fernandez, M. X., et al. 2009, ApJ, 692, 12 CrossRefGoogle Scholar
Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, ApJ, 706, 1364 CrossRefGoogle Scholar
Förster Schreiber, N. M., Shapley, A. E., Genzel, R., et al. 2011, ApJ, 739, 45 Google Scholar
Genzel, R., Tacconi, L. J., Eisenhauer, F., et al. 2006, Nature, 442, 786 Google Scholar
Genzel, R., Newman, S., Jones, T., et al. 2011, ApJ, 733, 101 Google Scholar
Guedes, J., Callegari, S., Madau, P., et al. 2011, ApJ, 742, 76 CrossRefGoogle Scholar
Guo, Y., Giavalisco, M., Ferguson, H. C., et al. 2012, ApJ, 757, 120 Google Scholar
Jones, T. A., Swinbank, A. M., Ellis, R. S., et al. 2010, MNRAS, 404, 1247 Google Scholar
Livermore, R. C., Jones, T., Richard, J., et al. 2012, MNRAS, 427, 688 CrossRefGoogle Scholar
Livermore, R. C., Jones, T. A., Richard, J., et al. 2015, MNRAS, 450, 1812 Google Scholar
Schreiber, C., Pannella, M., Elbaz, D., et al. 2015, A&A, 575, 74 Google Scholar
Swinbank, M., Smail, I., Sobral, D., et al. 2012, ApJ, 760, 131 Google Scholar
Tamburello, V., Mayer, L., Shen, S., et al. 2015, MNRAS, 453, 2490 CrossRefGoogle Scholar
Wisnioski, E., Glazebrook, K., Blake, C., et al. 2012, MNRAS, 422, 3339 Google Scholar
Wisnioski, E., Förster Schreiber, N. M., Wuyts, S., et al. 2015, ApJ, 799, 209 Google Scholar
Wuyts, E., Rigby, J. R., Gladders, M. D., et al. 2014, ApJ, 781, 61 Google Scholar