Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:44:08.198Z Has data issue: false hasContentIssue false

Massive extragalactic eclipsing binaries

Published online by Cambridge University Press:  01 August 2006

Alceste Z. Bonanos*
Affiliation:
Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, DC 20015, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Masses, radii and luminosities of distant stars can only be measured accurately in eclipsing binaries. The most massive eclipsing binary currently known is WR 20a, which consists of two ~ 80 M stars in a 3.7 d orbit. Analogs of WR 20a are bound to exist both in massive stellar clusters in our Galaxy and in nearby galaxies. The nearest ones are located in the clusters near the Galactic Center: the Center, Arches, and Quintuplet clusters. The severe amount of reddening in the galactic disk makes the study of galactic clusters challenging. However, with current 8-m class telescopes, the study of massive stars in nearby galaxies is also feasible. The nearest Local Group galaxies (LMC, SMC, M 31, M 33) provide the perfect laboratory for studying massive stars and determining their properties as a function of metallicity. Such studies will constrain models, confirm the dependence of evolution on metallicity and help understand the rate and nature of supernovae and gamma-ray bursts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007