Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:26:56.988Z Has data issue: false hasContentIssue false

MASSES: An SMA Large Project Surveying Protostars to Reveal How Stars Gain their Mass

Published online by Cambridge University Press:  13 January 2020

Ian W. Stephens
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA, USA e-mail: [email protected]
Michael M. Dunham
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA, USA e-mail: [email protected] Department of Physics, State University of New Yorkat Fredonia 280 Central Avenue, Fredonia, NY 14063, USA email: [email protected]
Philip C. Myers
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA, USA e-mail: [email protected]
Riwaj Pokhrel
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA, USA e-mail: [email protected] Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA
Tyler L. Bourke
Affiliation:
SKA Organization, Jodrell Bank Lower Withington, Macclesfield, Cheshire SK11 9FT, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-mass stars form from the gravitational collapse of dense molecular cloud cores. While a general consensus picture of this collapse process has emerged, many details on how mass is transferred from cores to stars remain poorly understood. MASSES (Mass Assembly of Stellar Systems and their Evolution with the SMA), an SMA large project, has just finished surveying all 74 Class 0 and Class I protostars in the nearby Perseus molecular cloud to reveal the interplay between fragmentation, angular momentum, and outflows in regulating accretion and setting the final masses of stars. Scientific highlights are presented in this proceedings, covering the topics of episodic accretion, hierarchical thermal Jeans fragmentation, angular momentum transfer, envelope grain sizes, and disk evolution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Andersen, B. C., Stephens, I. W., Dunham, M. M., et al. 2019, ApJ, 873, 54 (http://adsabs.harvard.edu/abs/2019ApJ…873…54A)CrossRefGoogle Scholar
Frimann, S., Jørgensen, J. K., Dunham, M. M., et al. 2017, A&A, 602, A120 Google Scholar
Jørgensen, J. K., van Dishoeck, E. F., Visser, R., et al. 2009, A&A, 507, 861 Google Scholar
Jørgensen, J. K., Visser, R., Williams, J. P., & Bergin, E. A. 2015, A&A, 579, A23 Google Scholar
Lee, K. I., Dunham, M. M., Myers, P. C., et al. 2015 ApJ, 814, 114 CrossRefGoogle Scholar
Lee, K. I., Dunham, M. M., Myers, P. C., et al. 2016, ApJL, 820, L2 CrossRefGoogle Scholar
Offner, S. S. R., Dunham, M. M., Lee, K. I., Arce, H. G., & Fielding, D. B. 2016, ApJL, 827, L11 CrossRefGoogle Scholar
Pokhrel, R., Myers, P. C., Dunham, M. M., et al. 2018, ApJ, 853, 5 CrossRefGoogle Scholar
Segura-Cox, D. M., Harris, R. J., Tobin, J. J., et al. 2016, ApJL, 817, L14 CrossRefGoogle Scholar
Segura-Cox, D. M., Looney, L. W., Tobin, J. J., et al. 2018, ApJ, 866, 161 CrossRefGoogle Scholar
Stephens, I. W., Dunham, M. M., Myers, P. C., et al. 2017, ApJ, 846, 16 CrossRefGoogle Scholar
Stephens, I. W., Dunham, M. M., Myers, P. C., et al. 2018, ApJS, 237, 22 CrossRefGoogle Scholar
Tobin, J. J., Looney, L. W., Li, Z.-Y., et al. 2016, ApJ, 818, 73 CrossRefGoogle Scholar
Tychoniec, Ł., Tobin, J. J., Karska, A., et al. 2018, ApJS, 238, 19 CrossRefGoogle Scholar
Visser, R., & Bergin, E. A. 2012, ApJL, 754, L18 CrossRefGoogle Scholar