No CrossRef data available.
Article contents
Mass loss and the Eddington parameter
Published online by Cambridge University Press: 29 August 2024
Abstract
Mass loss through stellar winds plays a dominant role in the evolution of massive stars. Very massive stars (VMSs, > 100Mȯ) display Wolf-Rayet spectral morphologies (WNh) whilst on the main-sequence. Bestenlehner (2020) extended the elegant and widely used stellar wind theory by Castor, Abbott & Klein (1975) from the optically thin (O star) to the optically thick main-sequence (WNh) wind regime. The new mass-loss description is able to explain the empirical mass-loss dependence on the Eddington parameter and is suitable for incorporation into stellar evolution models for massive and very massive stars. The prescription can be calibrated with the transition mass-loss rate defined in Vink & Gräfener (2012). Based on the stellar sample presented in Bestenlehner et al. (2014) we derive a mass-loss recipe for the Large Magellanic Cloud using the new theoretical mass-loss prescription of Bestenlehner (2020).
Keywords
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 18 , Symposium S361: Massive Stars Near and Far , May 2022 , pp. 163 - 167
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union