Hostname: page-component-6d856f89d9-4thr5 Total loading time: 0 Render date: 2024-07-16T05:02:36.670Z Has data issue: false hasContentIssue false

Mass ejection from neutron-star mergers

Published online by Cambridge University Press:  20 January 2023

Masaru Shibata
Affiliation:
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), am Mühlenberg 1, Potsdam-Golm D-14476, Germany email: [email protected] Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
Sho Fujibayashi
Affiliation:
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), am Mühlenberg 1, Potsdam-Golm D-14476, Germany email: [email protected]
Kota Hayashi
Affiliation:
Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
Kenta Kiuchi
Affiliation:
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), am Mühlenberg 1, Potsdam-Golm D-14476, Germany email: [email protected] Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
Shinya Wanajo
Affiliation:
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), am Mühlenberg 1, Potsdam-Golm D-14476, Germany email: [email protected]

Abstract

Merger of binary neutron stars and black hole-neutron star binaries is the promising source of short-hard gamma-ray bursts, the most promising site for the r-process nucleosynthesis, and the source of kilonovae. To theoretically predict the merger and mass ejection processes and resulting electromagnetic emission, numerical simulation in full general relativity (numerical relativity) is the unique approach. We summarize our current understanding for the processes of neutron-star mergers and subsequent mass ejection based on the results of long-term numerical-relativity simulations. We pay particular attention to the electron fraction of the ejecta.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. et al. 2021, arXiv: 2111.03606 Google Scholar
Abbott, B.P. et al. 2017, Phys. Rev. Lett., 119, 161101 CrossRefGoogle ScholarPubMed
Abbott, B. et al. 2020, Astrophys. J. Lett., 892, L3 CrossRefGoogle Scholar
Balbus, S.A. & Hawley, J.F. 1998, Rev. Mod. Phys., 70, 1 CrossRefGoogle Scholar
Barnes, J. & Kasen, D. 2013 Astrophys. J. 775, 18 Google Scholar
Beloborodov, A.M. 2003 Astrophys. J. 588, 931 Google Scholar
Blandford, R.D. & Znajek, R.L. 1977, Mon. Not. R. Astron. Soc. 179, 433 CrossRefGoogle Scholar
Blandford, R. & Payne, D.G. 1982, Mon. Not. R. Astron. Soc. 199, 883 CrossRefGoogle Scholar
Christie, I.M., et al. 2019, Mon. Not. R. Astron. Soc. 490, 4811 CrossRefGoogle Scholar
Cook, G.B., Shapiro, S.L., & Teukolsky, S.A. 1994, Astrophys. J. 423, 823 CrossRefGoogle Scholar
Fern´andez, R. & Metzger, B.D. 2013, Mon. Not. Royal Astron. Soc. 435, 502CrossRefGoogle Scholar
Fern´andez, R., Tchekhovskoy, A., Quataert, E., Foucart, F., & Kasen, D. 2019,Mon. Not. R. Astron. Soc. 482, 3373 Google Scholar
Fujibayashi, S., et al. 2018, Astrophys. J. 860, 64 CrossRefGoogle Scholar
Fujibayashi, S., et al. 2020, Astrophys. J. 901, 122 CrossRefGoogle Scholar
Fujibayashi, S., et al. 2020, Phys. Rev. D 101, 083029 CrossRefGoogle Scholar
Fujibayashi, S., et al. 2020, Phys. Rev. D 102, 123014 CrossRefGoogle Scholar
Fujibayashi, S., et al. 2022, in preparationGoogle Scholar
Hayashi, K. et al. 2022 Phys. Rev. D in submission (arXiv: 2111.04621)Google Scholar
Hotokezaka, K, Kiuchi, K, Kyutoku, K., Okawa, H., Sekiguchi, Y., Shibata, M. & Taniguchi, K. 2013, Phys. Rev. D 87, 024001 CrossRefGoogle Scholar
Just, O., Bauswein, A., Pulpillo, R.A., Goriely, S. & Janka, H.-Th. Mon. Not. Royal Astron. Soc. 448, 541CrossRefGoogle Scholar
Just, O. et al. 2021, ArXiv: 2102.08387 Google Scholar
Kiuchi, K. et al. 2014, Phys. Rev. D 90, 041502 CrossRefGoogle Scholar
Kyutoku, K. et al. 2021, Living Review Relativity 24, 5 CrossRefGoogle Scholar
Metzger, B.D. & Fern´andez, R. 2014, Mon. Not. Royal. Astron. Soc. 441, 3444CrossRefGoogle Scholar
Nedora, V. et al. 2021, Astrophys. J. 906, 98 Google Scholar
Price, D.J., & Rosswog, S. 2006, Science 312, 719 CrossRefGoogle Scholar
Radice, D. et al. 2018, Astrophys. J. 869, 130 CrossRefGoogle Scholar
Ruffert, M. & Janka, H.-Th 1996, Astron. Astrophys. 344, 573 Google Scholar
Shibata, M 2016 Numerical Relativity (World Scientific, Singapore) 10.1142/9692CrossRefGoogle Scholar
Shibata, M., Fujibayashi, S., Hotokezaka, K., Kiuchi, K., Kyutoku, K., Sekiguchi, Y. & Tanaka, M. 2017, Phys. Rev. D 96, 123012 CrossRefGoogle Scholar
Shibata, M., & Hotokezaka, K. 2019, Ann. Rev. Nucl. Part. Sci., 69, 41 CrossRefGoogle Scholar
Shibata, M. et al. 2021, Phys. Rev. D 104, 063026 CrossRefGoogle Scholar
Siegel, D.M. & Metzger, B.D. 2017, Phys. Rev. Lett. 119, 231102 CrossRefGoogle Scholar
Tanaka, M. & Hotokezaka, K. 2013, Astrophys. J. 775, 113 CrossRefGoogle Scholar