Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T17:47:03.010Z Has data issue: false hasContentIssue false

Mass Determination of Sub-stellar Companions Around Young Stars - The Example of HR 7329

Published online by Cambridge University Press:  23 April 2012

Tobias O. B. Schmidt
Affiliation:
Astrophysikalisches Institut und Universitäts-Sternwarte, Friedrich-Schiller-UniversitySchillergässchen 2-3, 07745 Jena, Germany email: [email protected]
Ralph Neuhäuser
Affiliation:
Astrophysikalisches Institut und Universitäts-Sternwarte, Friedrich-Schiller-UniversitySchillergässchen 2-3, 07745 Jena, Germany email: [email protected]
Andreas Seifahrt
Affiliation:
Physics Department, University of California, Davis, CA 95616, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lowrance et al. (2000) found a faint companion candidate about 4 arcsec south of the young A0-type star HR 7329. Its spectral type of M7-8 is consistent with a young brown dwarf companion. Here we report spectroscopic J band observations using the integral field spectrograph SINFONI at VLT, enabling a new estimation of effective temperature, extinction and surface gravity of the object and hence its mass. Although the data were reduced carefully, the presence of a spike within the point spread function of the object in each spectral image hampered the precise estimation of the properties of HR 7329. Nevertheless, we will show with the example of this sub-stellar companion how mass estimates independent of evolutionary models of directly imaged sub-stellar companions can be obtained, after removing most of the strong influence of the spike in the present data, and present a new mass estimation of HR 7329 B/b based on the values gained.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abuter, R., Schreiber, J., Eisenhauer, F., Ott, T., Horrobin, M., & Gillesen, S. 2006, New Astron. Revs, 50, 398CrossRefGoogle Scholar
Diolaiti, E., Bendinelli, O., Bonaccini, D., Close, L. M., Currie, D. G., & Parmeggiani, G. 2000, Proc. SPIE, 4007, 879CrossRefGoogle Scholar
Guenther, E. W., Neuhäuser, R., Huélamo, N., Brandner, W., & Alves, J. 2001, A&A, 365, 514Google Scholar
Hauschildt, P. H. & Baron, E. 1999, Journal of Computational and Applied Math., 109, 41Google Scholar
Helling, C., Woitke, P., & Thi, W.-F., 2008, A&A, 485, 547Google Scholar
Jung, Y., Lundin, L. K., Modigliani, A., Dobrzycka, D., & Hummel, W. 2006, Astronomical Data Analysis Software and Systems XV, 351, 295Google Scholar
Lowrance, P. J., Schneider, G., Kirkpatrick, J. D., et al. , 2000, ApJ, 541, 390CrossRefGoogle Scholar
Mohanty, S., Jayawardhana, R., Huélamo, N., & Mamajek, E. 2007, ApJ, 657, 1064CrossRefGoogle Scholar
Neuhäuser, R., Ginski, C., Schmidt, T. O. B., & Mugrauer, M. 2011, MNRAS, 1135Google Scholar
Patience, J., King, R. R., de Rosa, R. J., & Marois, C. 2010, A&A, 517A, 76Google Scholar
Perryman, M. A. C., et al. , 1997, A&A, 323, L49Google Scholar
Schmidt, T. O. B., Neuhäuser, R., Seifahrt, A., Vogt, N., Bedalov, A., Helling, C., Witte, S., & Hauschildt, P. H. 2008, A&A, 491, 311Google Scholar
Seifahrt, A., Neuhäuser, R., & Hauschildt, P. H. 2007, A&A, 463, 309Google Scholar
Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, M. F. 2008, Handbook of Star Forming Regions, Volume II, 757Google Scholar
Witte, S., Helling, C., Barman, T., Heidrich, N., & Hauschildt, P. H. 2011, A&A, 529, A44Google Scholar
Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001, ApJ (Letters), 562, L87CrossRefGoogle Scholar