Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T02:58:18.107Z Has data issue: false hasContentIssue false

Masers in GLIMPSE Extended Green Objects (EGOs)

Published online by Cambridge University Press:  24 July 2012

Claudia J. Cyganowski
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138USANSF Astronomy and Astrophysics Postdoctoral Fellow email: [email protected]
Crystal L. Brogan
Affiliation:
National Radio Astronomy Observatory, Charlottesville, VA 22902USA
Todd R. Hunter
Affiliation:
National Radio Astronomy Observatory, Charlottesville, VA 22902USA
Ed Churchwell
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
Jin Koda
Affiliation:
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Erik Rosolowsky
Affiliation:
Department of Physics and Astronomy, University of British Columbia, Okanagan, Kelowna BC, Canada
Sarah Towers
Affiliation:
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Barb Whitney
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
Qizhou Zhang
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Large-scale Spitzer surveys of the Galactic plane have yielded a new diagnostic for massive young stellar objects (MYSOs) that are actively accreting and driving outflows: extended emission in the IRAC 4.5 μm band, believed to trace shocked molecular gas. Maser studies of these extended 4.5 μm sources (called EGOs, Extended Green Objects, for the common coding of 3-color IRAC images) have been and remain crucial for understanding the nature of EGOs. High detection rates in VLA CH3OH maser surveys provided the first proof that EGOs were indeed MYSOs driving outflows; our recent Nobeyama 45-m survey of northern EGOs shows that the majority are associated with H2O masers. Maser studies of EGOs also provide important constraints for the longstanding goal of a maser evolutionary sequence for MYSOs, particularly in combination with high resolution (sub)mm data. New SMA results show that Class I methanol masers can be excited by both young (hot core) and evolved (ultracompact HII region) sources within the same massive star-forming region.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aguirre, J. E., Ginsburg, A. G., Dunham, M. K., et al. 2011, ApJS, 192, 4CrossRefGoogle Scholar
Breen, S. L., Ellingsen, S. P., Caswell, J. L., & Lewis, B. E. 2010, MNRAS, 401, 2219CrossRefGoogle Scholar
Breen, S. L. & Ellingsen, S. P. 2011, MNRAS, 416, 178Google Scholar
Brogan, C. L., Hunter, T. R., Cyganowski, C. J., et al. 2011, ApJ Letters, 739, L16CrossRefGoogle Scholar
Brogan, C. L., Hunter, T. R., Indebetouw, R., et al. 2008, Ap&SS, 313, 53Google Scholar
Churchwell, E., Babler, B. L., Meade, M. R., et al. 2009, PASP, 121, 213CrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., & Hunter, T. R. 2007, AJ, 134, 346CrossRefGoogle Scholar
Cyganowski, C. J., Whitney, B. A., Holden, E., et al. 2008, AJ, 136, 2391CrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., & Churchwell, E. 2009, ApJ, 702, 1615CrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., Churchwell, E., & Zhang, Q. 2011a, ApJ, 729, 124CrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., & Churchwell, E. 2011b, ApJ, 743, 56CrossRefGoogle Scholar
Ellingsen, S. P. 2006, ApJ, 638, 241CrossRefGoogle Scholar
Ellingsen, S. P., Voronkov, M. A., Cragg, D. M., et al. 2007, in: Chapman, J. M. & Baan, W. A. (eds.), Astrophysical Masers & their Environments, Proc. IAU Symposium No. 242 (Cambridge, UK: Cambridge University Press), p. 213Google Scholar
Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10CrossRefGoogle Scholar
Gibb, A. G., Richer, J. S., Chandler, C. J., & Davis, C. J. 2004, ApJ, 603, 198CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., Indebetouw, R., & Cyganowski, C. J. 2008, ApJ, 680, 1271CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., Megeath, S. T., et al. 2006, ApJ, 649, 888CrossRefGoogle Scholar
Hunter, T. R., Zhang, Q., & Sridharan, T. K. 2004, ApJ, 606, 929CrossRefGoogle Scholar
Kurtz, S., Hofner, P. & Álvarez, C. V. 2004, ApJS, 155, 149CrossRefGoogle Scholar
Minier, V., Ellingsen, S. P., Norris, R. P., & Booth, R. S. 2003, A&A, 403, 1095Google Scholar
Noriega-Crespo, A., Morris, P., Marleau, F. R., et al. 2004, ApJS, 154, 352CrossRefGoogle Scholar
Pineau des Forets, G., Flower, D. R., & Chieze, J.-P. 1997, in: Reipurth, B. & Bertout, C. (eds.), Herbig-Haro Flows and the Birth of Low-Mass Stars Proc. IAU Symposium No. 182 (Boston: Kluwer Academic Publishers), p. 199CrossRefGoogle Scholar
Reach, W. T., Rho, J., Tappe, A., et al. 2006, AJ, 131, 1479CrossRefGoogle Scholar
Rosolowsky, E., Dunham, M. K., Ginsburg, A., et al. 2010, ApJS, 188, 123CrossRefGoogle Scholar
Urquhart, J. S., Morgan, L. K., Figura, C. C., et al. 2011, MNRAS, 418, 1689CrossRefGoogle Scholar
Velusamy, T., Langer, W. D., & Marsh, K. A. 2007, ApJ Letters, 668, L159CrossRefGoogle Scholar
Voronkov, M. A., Caswell, J. L., Ellingsen, S. P., & Sobolev, A. M. 2010, MNRAS, 405, 2471Google Scholar
Zhang, Q., Hunter, T. R., Brand, J., et al. 2001, ApJ Letters, 552, L167CrossRefGoogle Scholar