Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T08:03:41.107Z Has data issue: false hasContentIssue false

Mapping low-latitude stellar substructure with SEGUE photometry

Published online by Cambridge University Press:  01 June 2008

Jelte T. A. de Jong
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected]
Brian Yanny
Affiliation:
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, United States
Hans-Walter Rix
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected]
Eric F. Bell
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected]
Andrew E. Dolphin
Affiliation:
Raytheon Corporation, 870 Winter Street, Waltham, MA 02451, United States
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Encircling the Milky Way at low latitudes, the Low Latitude Stream is a large stellar structure, the origin of which is as yet unknown. As part of the SEGUE survey, several photometric scans have been obtained that cross the Galactic plane, spread over a longitude range of 50° to 203°. These data allow a systematic study of the structure of the Galaxy at low latitudes, where the Low Latitude Stream resides. We apply colour-magnitude diagram fitting techniques to map the stellar (sub)structure in these regions, enabling the detection of overdensities with respect to smooth models. These detections can be used to distinguish between different models of the Low Latitude Stream, and help to shed light on the nature of the system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Adelman-McCarthy, et al. 2007, ApJS, 172, 634CrossRefGoogle Scholar
Bell, E. F., et al. 2007, ApJ, 680, 295CrossRefGoogle Scholar
Bellazzini, , et al. 2006, MNRAS, 366, 865CrossRefGoogle Scholar
Belokurov, V., et al. 2007, ApJ, 657, L89CrossRefGoogle Scholar
Bonifacio, P., et al. 2000, AJ, 120, 2065CrossRefGoogle Scholar
Butler, D. J. et al. 2007, AJ, 133, 2274CrossRefGoogle Scholar
de Jong, J. T. A., et al. 2007, ApJ, 662, 259CrossRefGoogle Scholar
de Jong, J. T. A., et al. 2008, AJ, 135, 1361CrossRefGoogle Scholar
Dolphin, A. E. 2001, MNRAS, 332, 91CrossRefGoogle Scholar
Girardi, L., et al. 2004, A&A, 422, 205Google Scholar
Ibata, R. A., et al. 2003, MNRAS, 340, L21CrossRefGoogle Scholar
Ivezić, Ž. et al. 2004, AN, 325, 583Google Scholar
Ivezić, Ž. et al. 2008, ApJ, subm., arXiv:0804.3850Google Scholar
Jurić, M., et al. 2008, ApJ, 673, 864CrossRefGoogle Scholar
Kazantzidis, S., et al. 2007, ApJ, subm. (arXiv:0708.1949)Google Scholar
Martin, N. F., et al. 2004, MNRAS, 348, 12CrossRefGoogle Scholar
Martin, N. F., et al. 2005, MNRAS, 362, 906CrossRefGoogle Scholar
Martínez-Delgado, D., et al. 2005, ApJ, 633, 205CrossRefGoogle Scholar
Momany, Y., et al. 2006, A&A, 451, 515Google Scholar
Newberg, H. J., et al. 2002, ApJ, 569, 245CrossRefGoogle Scholar
Peñarrubia, J., et al. 2005, ApJ, 626, 128CrossRefGoogle Scholar
Schlegel, D., Finkbeiner, D. & Davis, M. 1998, ApJ, 500, 525CrossRefGoogle Scholar
Siegel, M. H., et al. 2002, ApJ, 578, 151CrossRefGoogle Scholar
York, , et al. 2000, AJ, 120, 1579CrossRefGoogle Scholar
Younger, J. D., et al. 2008, ApJ, 676, L21CrossRefGoogle Scholar