Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T15:08:57.411Z Has data issue: false hasContentIssue false

Making systems of Super Earths by inward migration of planetary embryos

Published online by Cambridge University Press:  06 January 2014

Christophe Cossou
Affiliation:
Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France. CNRS, LAB, UMR 5804, F-33270, Floirac, France
Sean N. Raymond
Affiliation:
Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France. CNRS, LAB, UMR 5804, F-33270, Floirac, France
Arnaud Pierens
Affiliation:
Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac, France. CNRS, LAB, UMR 5804, F-33270, Floirac, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using N-body simulations with planet-disk interactions, we present a mechanism capable of forming compact systems of hot super Earths such as Kepler 11. Recent studies show that outward migration is common in the inner parts of radiative disks. However we show that two processes naturally tip the balance in favor of inward migration. First the corotation torque is too weak to generate outward migration for planetary embryos less massive than 4M. Second, system of multiple embryos generate sustained non-zero eccentricities that damp the corotation torque and again favor inward migration. Migration and accretion of planetary embryos in realistic disks naturally produce super Earths in resonant chains near the disk inner edge. Their compact configuration is similar to the observed systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Bitsch, B. & Kley, W. 2010, A&A, 523, A30Google Scholar
Chambers, J. E. 1999, MNRAS, 304, 793CrossRefGoogle Scholar
Chiang, E. I. & Goldreich, P. 1997, ApJ, 490, 368CrossRefGoogle Scholar
Cossou, C., Raymond, S. N., & Pierens, A. 2013, A&A, 553, L2Google Scholar
Cresswell, P. & Nelson, R. P. 2008, A&A, 482, 677Google Scholar
Horn, B., Lyra, W., Mac Low, M.-M., & Sándor, Z. 2012, ApJ, 750, 34CrossRefGoogle Scholar
Howard, A. W., Marcy, G. W., Bryson, S. T., et al. 2012, ApJS, 201, 15Google Scholar
Huré, J.-M. 2000, A&A, 358, 378Google Scholar
Lissauer, J. J., Fabrycky, D. C., Ford, E. B., et al. 2011, Nature, 470, 53CrossRefGoogle Scholar
Masset, F. S., Morbidelli, A., Crida, A., & Ferreira, J. 2006, ApJ, 642, 478CrossRefGoogle Scholar
Mayor, M., Lovis, C., Pepe, F., Ségransan, D., & Udry, S. 2011, Astronomische Nachrichten, 332, 429CrossRefGoogle Scholar
Menou, K. & Goodman, J. 2004, ApJ, 606, 520Google Scholar
Paardekooper, S.-J., Baruteau, C., & Kley, W. 2011, MNRAS, 410, 293Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Terquem, C. & Papaloizou, J. C. B. 2007, ApJ, 654, 1110CrossRefGoogle Scholar