Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T09:59:13.007Z Has data issue: false hasContentIssue false

Main-sequence oscillators as a test of stellar opacities

Published online by Cambridge University Press:  27 October 2016

Warrick H. Ball*
Affiliation:
Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany email: [email protected] Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The last decade has given rise to several tensions between calculated and (sometimes indirectly) measured stellar opacities. I discuss the current and future capacity for the asteroseismology of B-type oscillators (slowly-pulsating B-type stars and β Cepheids) and main-sequence solar-like oscillators to test stellar opacities. I briefly highlight two methods by which the B-type oscillators already constrain opacities, though they do not yet identify a superior set of tables. I then consider how the main-sequence solar-like oscillators might also test opacities, using the 16 Cygni system as an example. There are currently greater uncertainties than the opacities (in this example, the atmospheric structure) but many of these will be separately constrained in the near future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Angulo, C., Arnould, M., Rayet, M., et al. 1999, Nuclear Physics A, 656, 3 CrossRefGoogle Scholar
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. Barnes, T. G. III, & Bash, F. N., 25Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481 Google Scholar
Bailey, J. E., Nagayama, T., Loisel, G. P., et al. 2015, Nat, 517, 56 CrossRefGoogle Scholar
Ball, W. H. & Gizon, L. 2014, A&A, 568, A123 Google Scholar
Böhm-Vitense, E. 1958, ZAp, 46, 108 Google Scholar
Caughlan, G. R. & Fowler, W. A. 1988, Atomic Data and Nuclear Data Tables, 40, 283 CrossRefGoogle Scholar
Christensen-Dalsgaard, J. 2008, Ap&SS, 316, 113 Google Scholar
Christensen-Dalsgaard, J. & Houdek, G. 2010, Ap&SS, 328, 51 Google Scholar
Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., et al. 1996, Science, 272, 1286 CrossRefGoogle Scholar
Daszyńska-Daszkiewicz, J., Dziembowski, W. A., & Pamyatnykh, A. A. 2003, A&A, 407, 999 Google Scholar
Daszyńska-Daszkiewicz, J., Dziembowski, W. A., & Pamyatnykh, A. A. 2005, A&A, 441, 641 Google Scholar
Davies, G. R., Chaplin, W. J., Farr, W. M., et al. 2015, MNRAS, 446, 2959 CrossRefGoogle Scholar
Dziembowski, W. A., Moskalik, P., & Pamyatnykh, A. A. 1993, MNRAS, 265, 588 CrossRefGoogle Scholar
Dziembowski, W. A. & Pamiatnykh, A. A. 1993, MNRAS, 262, 204 CrossRefGoogle Scholar
Engelbrecht, C., Kgoadi, R., & Frescura, F. 2015, IAU General Assembly, 22, 56950 Google Scholar
Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, ApJ, 623, 585 CrossRefGoogle Scholar
Gough, D. 2004, in American Institute of Physics Conference Series, Vol. 731, Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter, ed. Celebonovic, V., Gough, D., & Däppen, W., 119–138Google Scholar
Gough, D. 2013, Sol. Phys., 287, 9 CrossRefGoogle Scholar
Gough, D. O., Kosovichev, A. G., Toomre, J., et al. 1996, Science, 272, 1296 CrossRefGoogle Scholar
Grevesse, N. & Sauval, A. J. 1998, SSRv, 85, 161 Google Scholar
Iglesias, C. A. & Rogers, F. J. 1996, ApJ, 464, 943 CrossRefGoogle Scholar
Kitiashvili, I. N., Mansour, N. N., Kosovichev, A., & Wray, A. A. 2015, IAU General Assembly, 22, 58520 Google Scholar
Kołaczkowski, Z., Pigulski, A., Soszyński, I., et al. 2006, MmSAI, 77, 336 Google Scholar
Krishna Swamy, K. S. 1966, ApJ, 145, 174 CrossRefGoogle Scholar
Kurtz, D. W., Shibahashi, H., Murphy, S. J., Bedding, T. R., & Bowman, D. M. 2015, MNRAS, 450, 3015 CrossRefGoogle Scholar
Le Pennec, M., Turck-Chieze, S., Ribeyre, X., et al. 2015, IAU General Assembly, 22, 55142 Google Scholar
Metcalfe, T. & Creevey, O. 2015, IAU General Assembly, 22, 46154 Google Scholar
Metcalfe, T. S., Chaplin, W. J., Appourchaux, T., et al. 2012, ApJL, 748, L10 CrossRefGoogle Scholar
Ostrowski, J., Daszynska-Daszkiewicz, J., & Cugier, H. 2015, IAU General Assembly, 22, 55832 Google Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3 CrossRefGoogle Scholar
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4 CrossRefGoogle Scholar
Ramírez, I., Meléndez, J., & Asplund, M. 2009, A&A, 508, L17 Google Scholar
Rogers, F. J. & Nayfonov, A. 2002, ApJ, 576, 1064 CrossRefGoogle Scholar
Salaris, M. & Cassisi, S. 2015, A&A, 577, A60 Google Scholar
Salmon, S., Montalbán, J., Morel, T., et al. 2012, MNRAS, 422, 3460 CrossRefGoogle Scholar
Sarro, L. M., Debosscher, J., López, M., & Aerts, C. 2009, A&A, 494, 739 Google Scholar
Seaton, M. J. 2005, MNRAS, 362, L1 CrossRefGoogle Scholar
Silva Aguirre, V., Basu, S., Brandão, I. M., et al. 2013, ApJ, 769, 141 CrossRefGoogle Scholar
Simon, N. R. 1982, ApJL, 260, L87 CrossRefGoogle Scholar
Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å., & Asplund, M. 2014, MNRAS, 442, 805 CrossRefGoogle Scholar
Turck-Chièze, S. & Gilles, D. 2013, in European Physical Journal Web of Conferences, Vol. 43, European Physical Journal Web of Conferences, 1003CrossRefGoogle Scholar
Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635 CrossRefGoogle Scholar
Waelkens, C. 1991, A&A, 246, 453 Google Scholar
Walczak, P. & Daszyńska-Daszkiewicz, J. 2014, in IAU Symposium, Vol. 301, IAU Symposium, ed. Guzik, J. A., Chaplin, W. J., Handler, G., & Pigulski, A. Google Scholar
Walczak, P., Fontes, C. J., Colgan, J., Kilcrease, D. P., & Guzik, J. A. 2015, A&A, 580, L9 Google Scholar