Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T22:41:31.350Z Has data issue: false hasContentIssue false

The magnetized universe: its origin and dissipation through acceleration and leakage to the voids

Published online by Cambridge University Press:  08 June 2011

Stirling A. Colgate
Affiliation:
MS B227, Los Alamos Nat. Lab., Los Alamos, N.M., 87545, USA email: [email protected]
Hui Li
Affiliation:
MS B227, Los Alamos Nat. Lab., Los Alamos, N.M., 87545, USA email: [email protected]
Philipp P. Kronberg
Affiliation:
MS T006, Los Alamos Nat. Lab., Los Alamos, N.M., 87545, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The consistency is awesome between over a dozen observations and the paradigm of radio lobes being immense sources of magnetic energy, flux, and relativistic electrons, – a magnetized universe.

The greater the total energy of an astrophysical phenomenon, the more restricted are the possible explanations. Magnetic energy is the most challenging because its origin is still considered problematic. We suggest that it is evident that the universe is magnetized because of radio lobes, ultra relativistic electrons, Faraday rotation measures, the polarized emission of extra galactic radio structures, the x-rays from relativistic electrons Comptonized on the CMB, and possibly extra galactic cosmic rays. The implied energies are so large that only the formation of supermassive black hole, (SMBH) at the center of every galaxy is remotely energetic enough to supply this immense energy, ~(1/10) 108Mc2 per galaxy. Only a galaxy cluster of 1000 galaxies has comparable energy, but it is inversely, (to the number of galaxies), rare per galaxy. Yet this energy appears to be shared between magnetic fields and accelerated relativistic particles, both electrons and ions. Only a large-scale coherent dynamo generating poloidal flux within the accretion disk forming the massive black hole makes a reasonable starting point. The subsequent winding of this dynamo-derived magnetic flux by conducting, angular momentum-dominated accreting matter, (~1011 turns near the event horizon in 108 years) produces the immense, coherent magnetic jets or total flux of radio lobes and similarly in star formation. By extending this same physics to supernova-neutron star formation, we predict that similar differential winding of the flux that couples explosion ejecta and a newly formed, rapidly rotating neutron star will produce similar phenomena of a magnetic jet and lobes in the forming supernova nebula. In all cases the conversion of force-free magnetic energy into accelerated ions and electrons is a major challenge.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Burbidge, G. R. 1956, Ap.J., 124, 416CrossRefGoogle Scholar
Burbidge, G. R. 1958, Ap.J., 129, 849CrossRefGoogle Scholar
Burbidge, G. R. & Burbidge, E. M. 1965, The Structure and Evolution of Galaxies, Proc. 13th (Solvay) Conf. on Physics, Bruxelles, New York: Interscience, Wiley, 137Google Scholar
Chandrasekhar, S., 1960, Proc. Natl. Acad. Sci., 46, 253CrossRefGoogle Scholar
Colgate, S. A. & Li, Hui, 2004, Reconnection of Force-Free Fields, ed. Sigl, Guenter and Boratav, Murat in The French Academy of Sciences, Comptes rendus - Physique, C.R. Physique 5 431 (astro-ph/0509054)Google Scholar
Croston, J. H., Hardcastle, M. J., Harris, D. E., Belsole, E., Birkinshaw, M., & Worrall, D. M. 2005, Ap.J. 626, 733CrossRefGoogle Scholar
Diehl, S., Li, Hui, Fryer, C., & Rafferty, D. 2008, Ap.J. 687, 173CrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Crawford, C. S., Conselice, C. J., Gallagher, J. S. III, & Wyse, R. F. G., 2003 Mon. Not. R. Astron. Soc. 344, L48 (2003)CrossRefGoogle Scholar
Hoyle, F., Fowler, W. A., Burbidge, G. R., & Burbidge, E. M. 1964, Ap.J., 139, 909CrossRefGoogle Scholar
Kronberg, P. P., Wielebinski, l. R., & Graham, D. A. 1986, Astron. Astrophys. 169, 63Google Scholar
Kronberg, P. P., Dufton, Q., Li, H., & Colgate, S. A. 2001, Ap.J., 560, 178CrossRefGoogle Scholar
Kronberg, P. P., Kothes, R., Salter, C., & Perillat, P. 2008, Ap.J., 659, 267CrossRefGoogle Scholar
Kulsrud, R. M. & Zweibel, E. G. 2008, Reports on Progress in Physics, 71, 046901 (2008).CrossRefGoogle Scholar
Li, H., Lovelace, R. V. E., Finn, J. M., & Colgate, S. A.Ap.J., 561, 915CrossRefGoogle Scholar
Mestel, L. 1999, Stellar Magnetism. (Oxford: Clarendon)Google Scholar
Owen, F. N., Hardee, P. E., & Cornwell, T. J. 1989, Ap.J., 340 698CrossRefGoogle Scholar
Pacholczyk, A. G. 1970, Radio Astrophysics (San Francisco: Freeman)Google Scholar
Pariev, I. V., Colgate, S. A., & Finn, J. M. 2007, Ap.J., 658, 114.CrossRefGoogle Scholar
Pariev, I. V., Colgate, S. A., & Finn, J. M. 2007, Ap.J., 658, 129.CrossRefGoogle Scholar
Parker, E. N. 1955, Ap.J. 121, 29Google Scholar
Parker, E. N. 1979, Cosmical Magnetic Fields, their Origin and their Activity. (Oxford: Claredon)Google Scholar