No CrossRef data available.
Published online by Cambridge University Press: 30 November 2022
Massive stars are amongst the rarest but also most intriguing stars. Their extreme, magnetised stellar winds induce, by wind-ISM interaction, famous multi-wavelengths circumstellar gas nebulae of various morphologies, spanning from large-scale wind bubbles to stellar wind bow shocks, rings and bipolar shapes. We present two- and three-dimensional magneto-hydrodynamical (MHD) simulations of the circumstellar medium of such massive stars at different phase of their evolution. Particularly, we investigate the stability properties of 3D MHD bow shock nebulae around the runaway red supergiant stars IRC-10414 and Betelgeuse. Our results show that their astrospheres are stabilised by an organised, non-parallel ambient magnetic field. These findings suggest that Betelgeuse’s bar is of interstellar origin. Last, we explore the circular aspect of the young nebula around the Wolf-Rayet stars. It is found that Wolf-Rayet nebulae are not affected by the ISM gas distribution in which the stellar objects lie, even in the case of fast stellar motion: as testifies the ring-like surroundings of the Milky Way’s fastest Wolf-Rayet star, WR124. The morphology of these nebulae is tightly related to their pre-Wolf-Rayet wind geometry and to their phase evolution transition properties, which can generate bipolar shapes. We will further discuss their diffuse projected emission by means of radiative transfer calculations and show that the projected diffuse emission can appear as bipolar structures as in NGC6888.