Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T00:09:11.415Z Has data issue: false hasContentIssue false

Magnetic helicity of solar active regions

Published online by Cambridge University Press:  01 September 2008

A. Nindos*
Affiliation:
Section of Astrogeophysics, Physics Department, University of Ioannina, Ioannina GR-45110, Greece email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic helicity is a quantity that describes the linkage and twistedness/shear in the magnetic field. It has the unique feature that it is probably the only physical quantity which is approximately conserved even in resistive MHD. This makes magnetic helicity an ideal tool for the exploration of the physics of eruptive events. The concept of magnetic helicity can be used to monitor the whole history of a CME event from the emergence of twisted magnetic flux from the convective zone to the eruption and propagation of the CME into interplanetary space. In this article, I discuss the sources of the magnetic helicity injected into active regions and the role of magnetic helicity in the initiation of solar eruptions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Amari, T., Luciani, J. F., Aly, J. J., Mikic, Z., & Linker, J. 2003a, ApJ, 585, 1073CrossRefGoogle Scholar
Amari, T., Luciani, J. F., Aly, J. J., Mikic, Z., & Linker, J. 2003b, ApJ, 595, 1231CrossRefGoogle Scholar
Berger, M. A. 1984, Geophys. Astrophys. Fluid Dyn., 30, 79CrossRefGoogle Scholar
Berger, M. A. 1985, ApJS, m59, 433CrossRefGoogle Scholar
Berger, M. A. 1988, A&A, 201, 355Google Scholar
Berger, M. A., & Field, G. B. 1984 J. Fluid Mech., 147, 133CrossRefGoogle Scholar
Chae, J. 2001 ApJ (Letters), 560, L95CrossRefGoogle Scholar
Chae, J. 2007, Adv. Sp. Res., 39, 1700CrossRefGoogle Scholar
Chae, J., Moon, Y.-J., & Park, Y.-D. 2004 Solar Phys., 223, 39CrossRefGoogle Scholar
Dasso, S., Mandrini, C. H., Démoulin, P., & Farrugia, C. J. 2003 JGR, 108, 1362Google Scholar
Dasso, S., Mandrini, C. H., Démoulin, P., & Luoni, M. L. 2006 A&A, 455, 349Google Scholar
Démoulin, P. 2007, Adv. Sp. Res., 39, 1674CrossRefGoogle Scholar
Démoulin, P. & Berger, M. A. 2003 Solar Phys. 215, 203CrossRefGoogle Scholar
Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L., Lopez-Fuentes, M. C, & Aulanier, G. 2002a Solar Phys. 207, 87CrossRefGoogle Scholar
Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L., et al. 2002b A&A, 382, 650Google Scholar
DeVore, R. C. 2000 ApJ, 539, 944CrossRefGoogle Scholar
Finn, J. H. & Antonsen, T. M. J. 1985 Comments Plasma Phys. Contr. Fus., 9, 111Google Scholar
Georgoulis, M. K. & LaBonte, B. J. 2006 ApJ, 636, 475CrossRefGoogle Scholar
Georgoulis, M. K. & LaBonte, B. J. 2007 ApJ, 671, 1034CrossRefGoogle Scholar
Gibson, S. E., Fan, Y., Mandrini, C. H., Fisher, G., & Démoulin, P. 2004 ApJ, 617, 600CrossRefGoogle Scholar
Green, L. M., Lopez-Fuentes, M. C., Mandrini, C. H., et al. 2002 Solar Phys., 208, 43CrossRefGoogle Scholar
Jeong, H. & Chae, J. 2007 ApJ, 671, 1022CrossRefGoogle Scholar
Kusano, K., Maeshiro, T., Yokoyama, T., & Sakurai, T. 2002 ApJ, 577, 501CrossRefGoogle Scholar
Kusano, K., Maeshiro, T., Yokoyama, T., & Sakurai, T. 2004 ApJ, 610, 537CrossRefGoogle Scholar
Lepping, R. P., Burlaga, L. F., & Jones, J. A. 1990 JGR, 95, 11957CrossRefGoogle Scholar
Lim, E.-K., Jeong, H., Chae, J., & Moon, Y.-J. 2007 ApJ, 656, 1167CrossRefGoogle Scholar
Longcope, D. W. 2004, ApJ, 612, 1181CrossRefGoogle Scholar
Low, B. C. 1996, Solar Phys., 167, 217CrossRefGoogle Scholar
Low, B. C. & Zhang, M. 2002 ApJ (Letters), 564, L53CrossRefGoogle Scholar
Mandrini, C. H., Pohjolainen, S., Dasso, S., et al. 2005 A&A, 434, 725Google Scholar
Moon, Y.-J., Chae, J., Choe, G. S., et al. 2002a ApJ, 574, 1066CrossRefGoogle Scholar
Moon, Y.-J., Chae, J., Wang, H., Choe, G. S., & Park, Y. D. 2002b ApJ, 580, 528CrossRefGoogle Scholar
Nindos, A. & Zhang, H. 2002 ApJ (Letters), 573, L133CrossRefGoogle Scholar
Nindos, A., Zhang, J., & Zhang, H. 2003 ApJ, 594, 1033CrossRefGoogle Scholar
Nindos, A. & Andrews, M. D. 2004 ApJ (Letters), 616, L175CrossRefGoogle Scholar
November, L. J. & Simon, G. W. 1988 ApJ, 333, 427CrossRefGoogle Scholar
Pariat, E., Démoulin, P., & Berger, M. A. 2005 A&A, 439, 1191Google Scholar
Pariat, E., Démoulin, P., & Nindos, A. 2007 Adv. Sp. Res., 39, 1706CrossRefGoogle Scholar
Pariat, E., Nindos, A., Démoulin, P., & Berger, M.A. 2006 A&A, 452, 623Google Scholar
Pevtsov, A. A., Canfield, R. C., & Metcalf, T. R. 1995 ApJ (Letters), 440, L109CrossRefGoogle Scholar
Pevtsov, A. A., Canfield, R. C., & Latushko, S. M. 2001 ApJ (Letters), 549, L261CrossRefGoogle Scholar
Phillips, A. D., MacNeice, P. J., & Antiochos, S. K. 2005 ApJ (Letters), 624, L129CrossRefGoogle Scholar
Schuck, P. W. 2006, ApJ, 646, 1358CrossRefGoogle Scholar
Schuck, P. W. 2008, ApJ, 683, 1134CrossRefGoogle Scholar
Ravindra, B., Longcope, D. W., & Abbett, W. P. 2008 ApJ, 677, 751CrossRefGoogle Scholar
Welsch, B. T., Abbett, W. P., DeRosa, M. L., et al. 2007 ApJ, 670, 1434CrossRefGoogle Scholar
Welsch, B. T., Fisher, G. H., Abbett, W. P., & Regnier, S. 2004 ApJ, 610, 1148CrossRefGoogle Scholar
Zhang, M. & Low, B. C. 2001 ApJ, 561, 406CrossRefGoogle Scholar
Zhang, M. & Low, B. C. 2003 ApJ, 584, 479CrossRefGoogle Scholar
Zhang, M., Flyer, N., & Low, B. C. 2006 ApJ, 644, 575CrossRefGoogle Scholar