Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T18:14:11.421Z Has data issue: false hasContentIssue false

Magnetic helicity content in solar wind flux ropes

Published online by Cambridge University Press:  01 September 2008

Sergio Dasso*
Affiliation:
Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA and Departamento de Física, FCEN-UBA, Buenos Aires, Argentina email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic helicity (H) is an ideal magnetohydrodynamical (MHD) invariant that quantifies the twist and linkage of magnetic field lines. In magnetofluids with low resistivity, H decays much less than the energy, and it is almost conserved during times shorter than the global diffusion timescale. The extended solar corona (i.e., the heliosphere) is one of the physical scenarios where H is expected to be conserved. The amount of H injected through the photospheric level can be reorganized in the corona, and finally ejected in flux ropes to the interplanetary medium. Thus, coronal mass ejections can appear as magnetic clouds (MCs), which are huge twisted flux tubes that transport large amounts of H through the solar wind. The content of H depends on the global configuration of the structure, then, one of the main difficulties to estimate it from single spacecraft in situ observations (one point - multiple times) is that a single spacecraft can only observe a linear (one dimensional) cut of the MC global structure. Another serious difficulty is the intrinsic mixing between its spatial shape and its time evolution that occurs during the observation period. However, using some simple assumptions supported by observations, the global shape of some MCs can be unveiled, and the associated H and magnetic fluxes (F) can be estimated. Different methods to quantify H and F from the analysis of in situ observations in MCs are presented in this review. Some of these methods consider a MC in expansion and going through possible magnetic reconnections with its environment. We conclude that H seems to be a ‘robust’ MHD quantity in MCs, in the sense that variations of H for a given MC deduced using different methods, are typically lower than changes of H when a different cloud is considered. Quantification of H and F lets us constrain models of coronal formation and ejection of flux ropes to the interplanetary medium, as well as of the dynamical evolution of MCs in the solar wind.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alexakis, A., Mininni, P. D., & Pouquet, A. 2006, Astrophys. J., 640, 335Google Scholar
Attrill, G., Nakwacki, M. S., Harra, L. K., van Driel-Gesztelyi, L., Mandrini, C. H., Dasso, S., & Wang, J. 2006, Solar Phys., 238, 117Google Scholar
Berger, M. A. 1984, Geophysical and Astrophysical Fluid Dynamics, 30, 79CrossRefGoogle Scholar
Berger, M. A. & Field, G. B. 1984, J. Fluid. Mech., 147, 133CrossRefGoogle Scholar
Bieber, J. W., Evenson, P. A., & Matthaeus, W. H. 1987, Astrophys. J., 315, 700CrossRefGoogle Scholar
Bieber, J. W. & Rust, D. M. 1995, Astrophys. J., 453, 911Google Scholar
Biskamp, D., Magnetic reconnection in plasmas, Cambridge Univ. Press, 2000Google Scholar
Bothmer, V. & Schwenn, R. 1994, Space Sci. Rev., 70, 215Google Scholar
Bothmer, V. & Schwenn, R. 1998, Annales Geophysicae, 16, 1Google Scholar
Burlaga, L., Sittler, E., Mariani, F., & Schwenn, R. 1981, J. Geophys. Res., 86, 6673Google Scholar
Dasso, S., Mandrini, C. H., Démoulin, P., & Farrugia, C. J. 2003, J. Geophys. Res., 108, 1362Google Scholar
Dasso, S., Mandrini, C. H., Démoulin, P., Luoni, M. L., & Gulisano, A. M. 2005a, Adv. Space Res., 35, 711Google Scholar
Dasso, S., Milano, L. J., Matthaeus, W. H., & Smith, C. W. 2005b, Astrophys. J., 635, L181CrossRefGoogle Scholar
Dasso, S., Gulisano, A. M., Mandrini, C. H., & Démoulin, P. 2005c, Advances in Space Research, 35, 2172CrossRefGoogle Scholar
Dasso, S., Mandrini, C. H., Luoni, M. L., Gulisano, A. M., Nakwacki, M. S., Pohjolainen, S., van Driel-Gesztelyi, L., & Démoulin, P. 2005d, in ESA Special Publication, Vol. 592, Solar Wind 11/SOHO 16, Connecting Sun and HeliosphereGoogle Scholar
Dasso, S., Mandrini, C. H., Démoulin, P., & Luoni, M. L. 2006, Astron. Astrophys., 455, 349CrossRefGoogle Scholar
Dasso, S., Nakwacki, M., Démoulin, P., & Mandrini, C. H. 2007, Solar Phys., 244, 115Google Scholar
Dasso, S., Mandrini, C. H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Démoulin, P., Zhukov, A. N., Rodriguez, L., Aran, A., Menvielle, M., & Poedts, S. 2008, J. Geophys. Res., doi:10.1029/2008JA013102, 2009Google Scholar
Démoulin, P. 2007, Advances in Space Research, 39, 1674CrossRefGoogle Scholar
Démoulin, P. 2008, Annales Geophysicae, 26, 3113Google Scholar
Elsasser, W. M. 1956, Reviews of Modern Physics, 28, 135CrossRefGoogle Scholar
Farrugia, C. J., Osherovich, V. A., & Burlaga, L. F. 1995, J. Geophys. Res., 100, 12293Google Scholar
Foullon, C., Owen, C. J., Dasso, S., Green, L. M., Dandouras, I., Elliott, H. A., Fazakerley, A. N., Bogdanova, Y. V., & Crooker, N. U. 2007, Solar Phys., 244, 139CrossRefGoogle Scholar
Frisch, U., Pouquet, A., Leorat, J., & Mazure, A. 1975, Journal of Fluid Mechanics, 68, 769Google Scholar
Goldstein, H. 1983, in Solar Wind Five Conference, 731Google Scholar
Gosling, J. T., Birn, J., & Hesse, M. 1995, Geophys. Res. Lett., 22, 869CrossRefGoogle Scholar
Gulisano, A. M., Dasso, S., Mandrini, C. H., & Démoulin, P. 2005, J. Atmos. Sol. Terr. Phys., 67, 1761CrossRefGoogle Scholar
Gulisano, A. M., Dasso, S., Mandrini, C. H., & Démoulin, P. 2007, Adv. Space Res., 40, 1881Google Scholar
Harra, L. K., Crooker, N. U., Mandrini, C. H., van Driel-Gesztelyi, L., Dasso, S., Wang, J., Elliott, H., Attrill, G., Jackson, B. V., & Bisi, M. M. 2007, Solar Phys., 244, 95Google Scholar
Hirshfeld, A. C. 1998, Am. J. Phys., 66, 1060Google Scholar
Larson, D. E. & et al. . 1997, Geophys. Res. Lett., 24, 1911CrossRefGoogle Scholar
Lepping, R. P., Burlaga, L. F., Szabo, A., Ogilvie, K. W., Mish, W. H., Vassiliadis, D., Lazarus, A. J., Steinberg, J. T., Farrugia, C. J., Janoo, L., & Mariani, F. 1997, J. Geophys. Res., 102, 14049Google Scholar
Longcope, D., Beveridge, C., Qiu, J., Ravindra, B., Barnes, G., & Dasso, S. 2007, Solar Phys., 244, 45Google Scholar
Lundquist, S. 1950, Ark. Fys., 2, 361Google Scholar
Luoni, M. L., Mandrini, C. H., Dasso, S., van Driel-Gesztelyi, L., & Démoulin, P. 2005, J. Atmos. Sol. Terr. Phys., 67, 1734Google Scholar
Mandrini, C. H., Pohjolainen, S., Dasso, S., Green, L. M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., & Foley, C. 2005, Astron. Astrophys., 434, 725CrossRefGoogle Scholar
Mandrini, C. H., Nakwacki, M. S., Attrill, G., van Driel-Gesztelyi, L., Démoulin, P., Dasso, S., & Elliott, H. 2007, Solar Phys., 244, 25CrossRefGoogle Scholar
Marubashi, K. 1997, in Coronal Mass Ejections, Geophysical Monograph 99, 147156Google Scholar
Matthaeus, W. H., Dasso, S., Weygand, J. M., Milano, L. J., Smith, C. W., & Kivelson, M. G. 2005, Phys. Rev. Letters, 95, 231101CrossRefGoogle Scholar
Moffatt, H. K. 1969, Journal of Fluid Mechanics, 35, 117CrossRefGoogle Scholar
Morales, L. F., Dasso, S., & Gómez, D. O. 2005, J. Geophys. Res., 110, 4204Google Scholar
Mostl, C., Miklenic, C., Farrugia, C. J., Temmer, M., Veronig, A., Galvin, A.B., Vrsnak, B., Biernat, H. K. 2008, Annales Geophysicae, 26, 3139CrossRefGoogle Scholar
Nakwacki, M. S., Dasso, S., Mandrini, C. H., & Démoulin, P. 2008a, J. Atmos. Sol. Terr. Phys., 70, 1318CrossRefGoogle Scholar
Nakwacki, M. S., Dasso, S., Démoulin, P., & Mandrini, C. H. 2008b, Geof. Int., 47, 295Google Scholar
Nindos, A. & Andrews, M. D. 2004, Astrophys. J. Lett., 616, L175CrossRefGoogle Scholar
Parker, E. N. 1987, Solar Phys., 110, 11Google Scholar
Qiu, J., Hu, Q., Howard, T. A., & Yurchyshyn, V. B. 2007, Astrophys. J., 659, 758CrossRefGoogle Scholar
Rodriguez, L., Zhukov, A. N., Dasso, S., Mandrini, C. H., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Aran, A., Menvielle, M., Poedts, S., & Schmieder, B. 2008, Annales Geophysicae, 26, 213Google Scholar
Russell, C. T. & Shinde, A. A. 2005, Solar Phys., 229, 323Google Scholar
Ruzmaikin, A., Martin, S., & Hu, Q. 2003, J. Geophys. Res., 108, 1096Google Scholar
Servidio, S., Matthaeus, W. H., & Carbone, V. 2008, Physics of Plasmas, 15, 042314CrossRefGoogle Scholar
Smith, C. W. 2003, Advances in Space Research, 32, 1971Google Scholar
Turner, L. 1986, IEEE Transactions on Plasma Science, 14, 849Google Scholar
Yurchyshyn, V. B., Wang, H., Goode, P. R., & Deng, Y. 2001, Astrophys. J., 563, 381Google Scholar
Yurchyshyn, V., Hu, Q., & Abramenko, V. 2005, Space Weather, 3, 8CrossRefGoogle Scholar
Zurbuchen, T. H. & Richardson, I. G. 2006, Space Science Reviews, 123, 31Google Scholar