Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T15:02:23.021Z Has data issue: false hasContentIssue false

Magnetic fields, stellar feedback, and the geometry of H II regions

Published online by Cambridge University Press:  01 November 2008

Gary J. Ferland*
Affiliation:
Department of Physics & Astronomy, University of Kentucky, Lexington, KY 40506, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic pressure has long been known to dominate over gas pressure in atomic and molecular regions of the interstellar medium. Here I review several recent observational studies of the relationships between the H+, H0 and H2 regions in M42 (the Orion complex) and M17. A simple picture results. When stars form they push back surrounding material, mainly through the outward momentum of starlight acting on grains, and field lines are dragged with the gas due to flux freezing. The magnetic field is compressed and the magnetic pressure increases until it is able to resist further expansion and the system comes into approximate magnetostatic equilibrium. Magnetic field lines can be preferentially aligned perpendicular to the long axis of quiescent cloud before stars form. After star formation and pushback occurs ionized gas will be constrained to flow along field lines and escape from the system along directions perpendicular to the long axis. The magnetic field may play other roles in the physics of the H II region and associated PDR. Cosmic rays may be enhanced along with the field and provide additional heating of atomic and molecular material. Wave motions may be associated with the field and contribute a component of turbulence to observed line profiles.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Abel, N. P., Brogan, C. L., Ferland, G. J., ODell, C. R., Shaw, G., & Troland, T. H. 2004, ApJ 609, 247Google Scholar
Abel, N. P., Ferland, G. J., ODell, C. R., Shaw, G., & Troland, T. H. 2006, ApJ 644, 344Google Scholar
Alves, F. O., Franco, G. A. P., & Girart, J. M. 2008, A&A 486, L13Google Scholar
Beckman, J. E. & Relaño, M. 2004, Ap&SS 292, 111Google Scholar
Brogan, C. L., & Troland, T. H. 2001, ApJ 560, 821Google Scholar
Ferland, G. J. 2001, PASP 113, 41Google Scholar
Ferland, G. J. 2001, PASP 113, 41CrossRefGoogle Scholar
Ferland, G. J. 2003, ARAA 41, 517Google Scholar
Ferland, G. J. 2008, EAS Publications Series, Volume 31, 2008, pp.53-56CrossRefGoogle Scholar
García-Díaz, M. T., Henney, W. J., López, J. A., & Doi, T., 2008, RMxAA 44, 181Google Scholar
Giammanco, C. & Beckman, J. E., 2005, A&A 437, L11Google Scholar
Güdel, M., Briggs, K. R., Montmerle, T., Audard, M., Rebull, L., & Skinner, S. L., 2008, Science 319 309CrossRefGoogle Scholar
Heiles, C. 1988, ApJ 324, 321CrossRefGoogle Scholar
Heiles, C. & Crutcher, R. 2005, chapter in Cosmic Magnetic Fields. Edited by Wielebinski, Richard and Beck, Rainer. Lecture notes in Physics Volume 664Google Scholar
Heiles, C. & Troland, T. H. 2005, ApJ 624, 773Google Scholar
Heitsch, F., Stone, J. M., & Hartmann, L. W., 2009, ApJ, in press arXiv:0812.3339v1)Google Scholar
Henney, W., 2008, La Nebulosa de Orin en cuatro dimensiones Dr. William Henney Boletn de la UNAM Campus Morelia, No. 16, Julio/Agosto 2008, p. 1 http://www.csam.unam.mx/vinculacion/Julio-Agosto%202008.pdfGoogle Scholar
Houde, M., Dowell, C. D., Hildenbrand, R. H., Dotson, J. L.Vaillancourt, J. E., Phillips, T. G., Peng, R., & Bastien, P. 2004, ApJ 604, 717Google Scholar
Indriolo, N., Gaballe, T., Oka, T., & McCall, B. 2007, ApJ 671, 1736CrossRefGoogle Scholar
Melnick, J., Terlevich, R., & Moles, M. 1988, MNRAS 235, 297Google Scholar
O'Dell, C. R. 2001a, ARAA 39, 99Google Scholar
O'Dell, C. R. 2001b, PASP 113, 29Google Scholar
O'Dell, C. R., Peimbert, M., & Peimbert, A. 2003, AJ 125, 2590Google Scholar
Osterbrock, D. E., & Ferland, G. J., 2006, Astrophysics of Gaseous Nebulae & Active Galactic Nuclei, 2nd edition, Mill Valley; University Science PressGoogle Scholar
Padoan, P. & Scalo, J., 2005, ApJ 624, L97Google Scholar
Pan, L. & Padoan, P. 2008, ApJ, in press, arXiv:0806.4970Google Scholar
Pellegrini, E., Baldwin, J., Brogan, C., Hanson, M., Abel, N., Ferland, G., Nemala, H., Shaw, G., & Troland, T. 2007, ApJ 668, 1119CrossRefGoogle Scholar
Pellegrini, E., Baldwin, J., Ferland, G., Shaw, G., & Heathcote, S. 2008, ApJ, in press (arXiv:0811.1176)Google Scholar
Plume, R. et al. 2000, ApJ 539L, 133Google Scholar
Roshi, D. A. 2007, ApJ 658, L41Google Scholar
Shaw, G., Ferland, G. J., Henney, W. J., Stancil, P. C., Abel, N. P., Pellegrini, E. W., Baldwin, J. A., & van Hoof, P. A. M. 2009, ApJ, submittedGoogle Scholar
Spitzer, L. 1978, Physical Processes in the Interstellar Medium, New York: WileyGoogle Scholar
Tielens, A. G. G. M., & Hollenbach, D. 1985, ApJ 291, 722CrossRefGoogle Scholar
Troland, T. H., Heiles, C., & Goss, W. M. 1989, ApJ 337, 342Google Scholar
Webber, W. R. 1998, ApJ 506, 329Google Scholar