Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:20:21.678Z Has data issue: false hasContentIssue false

Magnetic fields in Planetary Nebulae: paradigms and related MHD frontiers

Published online by Cambridge University Press:  01 November 2008

Eric G. Blackman*
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many, if not all, post AGB stellar systems swiftly transition from a spherical to a powerful aspherical pre-planetary nebula (pPNE) outflow phase before waning into a PNe. The pPNe outflows require engine rotational energy and a mechanism to extract this energy into collimated outflows. Just radiation and rotation are insufficient but a symbiosis between rotation, differential rotation and large scale magnetic fields remains promising. Present observational evidence for magnetic fields in evolved stars is suggestive of dynamically important magnetic fields, but both theory and observation are rife with research opportunity. I discuss how magnetohydrodynamic outflows might arise in pPNe and PNe and distinguish different between approaches that address shaping vs. those that address both launch and shaping. Scenarios involving dynamos in single stars, binary driven dynamos, or accretion engines cannot be ruled out. One appealing paradigm involves accretion onto the primary post-AGB white dwarf core from a low mass companion whose decaying accretion supply rate owers first the pPNe and then the lower luminosity PNe. Determining observational signatures of different MHD engines is a work in progress. Accretion disk theory and large scale dynamos pose many of their own fundamental challenges, some of which I discuss in a broader context.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Balbus, S. A. & Hawley, J. F. 1998, Reviews of Modern Physics 70, 1CrossRefGoogle Scholar
Balbus, S. A., Gammie, C. F. & Hawley, J. F. 1994, MNRAS 271, 197Google Scholar
Balick, B. & Frank, A. 2002, ARAA 40, 439CrossRefGoogle Scholar
Blackman, E. G. 1998, ApJ 496, L17CrossRefGoogle Scholar
Blackman, E. G., & Field, G. B. 2000, MNRAS 318, 724CrossRefGoogle Scholar
Blackman, E. G., Frank, A., Markiel, J. A., Thomas, J. H., & Van Horn, H. M. 2001a, Nature 409, 485CrossRefGoogle Scholar
Blackman, E. G., Frank, A., & Welch, C. 2001b, ApJ 546, 288CrossRefGoogle Scholar
Blackman, E. G. & Field, G. B. 2002, Phys. Rev. Letters 89, 265007CrossRefGoogle Scholar
Blackman, E. G. & Brandenburg, A. 2003, ApJ 584, L99CrossRefGoogle Scholar
Blackman, E. G. 2007, New Journal of Physics 9, 309CrossRefGoogle Scholar
Blackman, E. G., Penna, R. F. & Varnière, P. 2008, New Astronomy 13, 244CrossRefGoogle Scholar
Bodo, G., Mignone, A., Cattaneo, F., Rossi, P., & Ferrari, A. 2008, A&A 487, 1Google Scholar
Brandenburg, A., Nordlund, A., Stein, R. F., & Torkelsson, U. 1995, ApJ 446, 741CrossRefGoogle Scholar
Brandenburg, A. 2001, ApJ 550, 824CrossRefGoogle Scholar
Brandenburg, A. & Sandin, C. 2004, A&A 427, 13Google Scholar
Brandenburg, A. & Subramanian, K. 2005, Phys. Rep. 417, 1CrossRefGoogle Scholar
Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., & Sánchez Contreras, C. 2001, A&A 377, 868Google Scholar
Chevalier, R. A. & Luo, D. 1994, ApJ 421, 225Google Scholar
Edgar, R. G., Nordhaus, J., Blackman, E. G., & Frank, A. 2008, ApJ 675, L101CrossRefGoogle Scholar
Ferreira, J., Dougados, C., & Cabrit, S. 2006, A&A 453, 785Google Scholar
Fromang, S., Papaloizou, J., Lesur, G., & Heinemann, T. 2007, A&A 476, 1123Google Scholar
García-Segura, G., 1997, ApJ 489, L189CrossRefGoogle Scholar
García-Díaz, M. T., López, J. A., García-Segura, G., Richer, M. G., & Steffen, W. 2008, ApJ 676, 402Google Scholar
García-Segura, G., Langer, N., Różyczka, M., & Franco, J. 1999, ApJ 517, 767CrossRefGoogle Scholar
García-Segura, G., López, J. A., & Franco, J. 2005, ApJ 618, 919CrossRefGoogle Scholar
Gardiner, T. A. & Frank, A. 2001, ApJ 557, 250CrossRefGoogle Scholar
Grether, D. & Lineweaver, C. H. 2006, ApJ 640, 1051CrossRefGoogle Scholar
Herpin, F., Baudry, A., Thum, C., Morris, D., & Wiesemeyer, H. 2006, A&A 450, 667Google Scholar
Hubbard, A., & Blackman, E. G. 2008a, MNRAS 390, 331CrossRefGoogle Scholar
Hubbard, A. & Blackman, E. G. 2008b, MNRAS, submittedGoogle Scholar
Huggins, P. J. 2007, ApJ 663, 342CrossRefGoogle Scholar
Iben, I. J. & Livio, M. 1993, PASP 105, 1373CrossRefGoogle Scholar
Imai, H., Nakashima, J.-I., Diamond, P. J., Miyazaki, A., & Deguchi, S. 2005, ApJ 622, L125CrossRefGoogle Scholar
Jordan, S., Werner, K., & O'Toole, S. J. 2005, A&A 432, 273Google Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2008, A&A 491, 353Google Scholar
Lesur, G. & Ogilvie, G. I. 2008, A&A 488, 451Google Scholar
Matt, S., Frank, A. & Blackman, E.G., 2006, ApJ 647, L45CrossRefGoogle Scholar
Mastrodemos, N. & Morris, M., 1998, ApJ 497, 303CrossRefGoogle Scholar
Moffatt, H. K. 1978, Magnetic field generation in electrically conducting fluids, Cambridge University Press, p. 353Google Scholar
Nordhaus, J. & Blackman, E. G., 2006, MNRAS 370, 2004CrossRefGoogle Scholar
Nordhaus, J., Blackman, E. G. & Frank, A., 2007, MNRAS 376, 599CrossRefGoogle Scholar
Pascoli, G. 1993, Journal of Astrophys. and Astr. 14, 65CrossRefGoogle Scholar
Pascoli, G. 1997, ApJ 489, 946CrossRefGoogle Scholar
Pessah, M. E., Chan, C.-K., & Psaltis, D. 2007, ApJ 668, L51CrossRefGoogle Scholar
Pudritz, R. E., 2004, Les Houches Summer School, 78, 187Google Scholar
Reipurth, B. & Bally, J. 2001, ARAA 39, 403CrossRefGoogle Scholar
Reyes-Ruiz, M. & Lopez, J. A. 1999 ApJ 524, 952CrossRefGoogle Scholar
Rogachevskii, I. & Kleeorin, N. 2003, Phys. Rev. E 68, 036301CrossRefGoogle Scholar
Sabin, L., Zijlstra, A. A., & Greaves, J. S. 2007, MNRAS 376, 378CrossRefGoogle Scholar
Schekochihin, A. A., et al. , J. C., , Rogachevskii, I., & Yousef, T. A. 2008, arXiv:0810.2225Google Scholar
Shakura, N. I. & Syunyaev, R. A. 1973, A&A 24, 337Google Scholar
Steffen, W., García-Segura, G., & Koning, N. 2008, arXiv:0809.5263Google Scholar
Soker, N., 2005, AJ 129, 947CrossRefGoogle Scholar
Soker, N., 2006a, ApJ 645, L57CrossRefGoogle Scholar
Soker, N. 2006b, PASP 118, 260CrossRefGoogle Scholar
Soker, N., & Livio, M. 1994, ApJ 421, 219CrossRefGoogle Scholar
Soker, N. & Zoabi, E. 2002, MNRAS 329, 204CrossRefGoogle Scholar
Sur, S., Shukurov, A., & Subramanian, K. 2007, MNRAS 377, 874CrossRefGoogle Scholar
Tout, C. A. & Pringle, J. E. 1992, MNRAS 256, 269CrossRefGoogle Scholar
Vishniac, E. T. & Brandenburg, A. 1997, ApJ 475, 263CrossRefGoogle Scholar
Vishniac, E. T. & Cho, J. 2001, ApJ 550, 752CrossRefGoogle Scholar
Vlemmings, W. H. T. 2007, in Astrophysical Masers and their Environments, IAU Symposium 242, p.37Google Scholar
Vlemmings, W. H. T., Diamond, P. J., & Imai, H. 2006, Nature 440, 58CrossRefGoogle Scholar
Vlemmings, W. H. T., & van Langevelde, H. J. 2008, A&A 488, 619Google Scholar
Wang, L. & Wheeler, J. C. 2008, ARAA 46, 433CrossRefGoogle Scholar
Yousef, T. A. et al. , 2008, Phys Rev. Lett. 100, 184501CrossRefGoogle Scholar