Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T22:46:24.731Z Has data issue: false hasContentIssue false

Magnetic Field - Stellar Winds Interaction

Published online by Cambridge University Press:  23 January 2015

Asif ud-Doula*
Affiliation:
Penn State Worthington Scranton, Dunmore, PA 18512, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As per the recent study by the MiMeS collaboration, only about 10% of massive stars possess organized global magnetic fields, typically dipolar in nature. The competition between such magnetic fields and highly non-linear radiative forces that drive the stellar winds leads to a highly complex interaction. Such an interplay can lead to a number of observable phenomena, e.g. X-ray, wind confinement, rapid stellar spindown. However, due to its complexity, such an interaction cannot usually be modeled analytically, instead numerical modeling becomes a necessary tool. In this talk, I will discuss how numerical magnetohydrodynamic (MHD) simulations are employed to understand the nature of such magnetized massive star winds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Babel, J. & Montmerle, T. 1997a, ApJ (Letters) 485, 29Google Scholar
Babel, J. & Montmerle, T. 1997b, A&A 323, 121Google Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ 195, 157CrossRefGoogle Scholar
Donati, J.-F., Babel, J., Harries, T. J., et al. 2002, MNRAS 333, 55Google Scholar
Feldmeier, A. 1995, A&A 299, 523Google Scholar
Gagné, M., Oksala, M. E., Cohen, D. H., et al. 2005, ApJ 628, 986Google Scholar
Howarth, I. D. & Smith, K. C. 1995, ApJ 439, 431CrossRefGoogle Scholar
Kaper, L., Henrichs, H. F., Nichols, J. S., et al. 1996, A&AS 116, 257Google Scholar
Mathias, P., Aerts, C., Briquet, M., et al. 2001, A&A 379, 905Google Scholar
Owocki, S. P. 1994, Ap&SS 221, 3Google Scholar
Sundqvist, J. O., ud-Doula, A., Owocki, S. P., et al. 2012, MNRAS 423, L21Google Scholar
Telting, J. H., Aerts, C., & Mathias, P. 1997, A&A 322, 493Google Scholar
Townsend, R. H. D. & Owocki, S. P. 2005, MNRAS 357, 251Google Scholar
Townsend, R. H. D., Owocki, S. P., & ud-Doula, A. 2007, MNRAS, 382, 139CrossRefGoogle Scholar
ud-Doula, A. 2003, Ph.D. thesis, University of DelawareGoogle Scholar
ud-Doula, A., Owocki, S., Townsend, R., Petit, V., & Cohen, D. 2014, MNRAS 441, 3600CrossRefGoogle Scholar
ud-Doula, A. & Owocki, S. P. 2002, ApJ 576, 413CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2008, MNRAS 385, 97Google Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2009, MNRAS 392, 1022Google Scholar
ud-Doula, A., Sundqvist, J. O., Owocki, S. P., Petit, V., & Townsend, R. H. D. 2013, MNRAS 428, 2723Google Scholar
ud-Doula, A., Townsend, R. H. D., & Owocki, S. P. 2006, ApJ (Letters) 640, L191Google Scholar