Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T19:07:06.476Z Has data issue: false hasContentIssue false

Magnetic energy fluxes in close-in star-planet systems

Published online by Cambridge University Press:  09 September 2016

A. Strugarek
Affiliation:
Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC H3C-3J7, Canada email: [email protected] CEA-Saclay, IRFU/SAp, Gif-sur-Yvette, France
A. S. Brun
Affiliation:
CEA-Saclay, IRFU/SAp, Gif-sur-Yvette, France
S. P. Matt
Affiliation:
Department of Physics & Astronomy, University of Exter, EX2 4QL, UK
V. Réville
Affiliation:
CEA-Saclay, IRFU/SAp, Gif-sur-Yvette, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic interactions between a close-in planet and its host star have been postulated to be a source of enhanced chromospheric emissions. We develop three dimensional global models of star-planet systems under the ideal magnetohydrodynamic (MHD) approximation to explore the impact of magnetic topology on the energy fluxes induced by the magnetic interaction. We conduct twin numerical experiments in which only the magnetic topology of the interaction is altered. We find that the Poynting flux varies by more than an order of magnitude when varying the magnetic topology from an aligned case to an anti-aligned case. This provides a simple and robust physical explanation for on/off enhanced chromospheric emissions induced by a close-in planet on time-scales of the order of days to years.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Cohen, O., Drake, J. J., Glocer, A., et al. 2014, ApJ, 790, 57 Google Scholar
Cohen, O., Drake, J. J., Kashyap, V. L., Sokolov, I. V., & Gombosi, T. I. 2010, ApJ, 723, L64 Google Scholar
Cuntz, M., Saar, S. H., & Musielak, Z. E. 2000, ApJ, 533, L151 CrossRefGoogle Scholar
Fares, R., Donati, J.-F., Moutou, C., et al. 2010, MNRAS, 406, 409 CrossRefGoogle Scholar
Grießmeier, J. M., Zarka, P., & Spreeuw, H. 2007, A&A, 475, 359 Google Scholar
Ip, W.-H., Kopp, A., & Hu, J.-H. 2004, ApJ, 602, L53 CrossRefGoogle Scholar
Kopp, A., Schilp, S., & Preusse, S. 2011, ApJ, 729, 116 CrossRefGoogle Scholar
Lecavelier des Etangs, A., Sirothia, S. K., & Gopal-Krishna, , Zarka, P. 2013, A&A, 552, 65 Google Scholar
Mathis, S., Alvan, L., & Remus, F. 2013, EAS Publications Series, 62, 323 Google Scholar
Matsakos, T., Uribe, A., & Königl, A. 2015, A&A, 578, A6 Google Scholar
Matt, S. P., MacGregor, K. B., Pinsonneault, M. H., & Greene, T. P. 2012, ApJL, 754, L26 Google Scholar
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228 CrossRefGoogle Scholar
Miller, B. P., Gallo, E., Wright, J. T., & Pearson, E. G. 2015, ApJ, 799, 163 Google Scholar
Neubauer, F. M. 1998, Journal of Geo. Res., 103, 19843 Google Scholar
Pillitteri, I., Wolk, S. J., Sciortino, S., & Antoci, V. 2014, A&A, 567, A128 Google Scholar
Réville, V., Brun, A. S., Matt, S. P., Strugarek, A., & Pinto, R. F. 2015, ApJ, 798, 116 Google Scholar
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. 2013, A&A, 552, 119 Google Scholar
Shkolnik, E., Bohlender, D. A., Walker, G. A. H. & Collier Cameron, A. 2008, ApJ, 676, 628 Google Scholar
Strugarek, A., Brun, A. S., Matt, S. P., & Réville, V. 2014, ApJ, 795, 86 Google Scholar
Strugarek, A., Brun, A. S., Matt, S. P., & Réville, V. 2015, ApJ, 815, 111 Google Scholar
Turner, J. D., Smart, B. M., Hardegree-Ullman, K. K., et al. 2013, MNRAS, 428, 678 Google Scholar
Vidotto, A. A., Fares, R., Jardine, M., Moutou, C., & Donati, J.-F. 2015, MNRAS, 449, 4117 Google Scholar
Zarka, P. 2007, Plan. and Space Sci. 55 598 Google Scholar