No CrossRef data available.
Article contents
Magnetic collimation of relativistic jets: the role of the black hole spin
Published online by Cambridge University Press: 08 June 2011
Abstract
An ideal engine for producing ultrarelativistic jets is a rapidly rotating black hole threaded by a magnetic field. Following the 3+1 decomposion of spacetime of Thorne et al. (1986), we use a local inertial frame of reference attached to an observer comoving with the frame-dragging of the Kerr black hole (ZAMO) to write the GRMHD equations. Assuming θ-self similarity, analytical solutions for jets can be found for which the streamline shape is calculated exactly. Calculating the total energy variation between a non polar streamline and the polar axis, we have extended to the Kerr metric the simple criterion for the magnetic collimation of jets developed by Sauty et al. (1999). We show that the black hole rotation induces a more efficient magnetic collimation of the jet.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 6 , Symposium S274: Advances in Plasma Astrophysics , September 2010 , pp. 246 - 248
- Copyright
- Copyright © International Astronomical Union 2011