Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T17:29:34.097Z Has data issue: false hasContentIssue false

Luminosities, Masses and Star Formation Rates of Galaxies at High Redshift

Published online by Cambridge University Press:  05 September 2012

Andrew J. Bunker*
Affiliation:
Department of Physics, University of OxfordDenys Wilkinson Building, Keble Road, Oxford OX1 3RH, U.K. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There has been great progress in recent years in discovering star forming galaxies at high redshifts (z > 5), close to the epoch of reionization of the intergalactic medium (IGM). The WFC3 and ACS cameras on the Hubble Space Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 − 8 seems to be much lower than at z = 2 − 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Becker, R. H. et al. , 2001, AJ, 122, 2850CrossRefGoogle Scholar
Bouwens, R. J., et al. 2003, ApJ, 595, 589CrossRefGoogle Scholar
Bouwens, R. J., Illingworth, G. D., Blakeslee, J. P., & Franx, M., 2006, ApJ, 653, 53CrossRefGoogle Scholar
Bouwens, R. J., Illingworth, G. D., Franx, M., & Ford, H., 2007, ApJ, 670, 928CrossRefGoogle Scholar
Bunker, A. J., Stanway, E. R., Ellis, R. S., & McMahon, R. G., 2004, MNRAS, 355, 374CrossRefGoogle Scholar
Bunker, A. J., Wilkins, S., Ellis, R. S., Stark, D. P., Lorenzoni, S., Chiu, K., Lacy, M., Jarvis, M. J., & Hickey, S. 2010, MNRAS, 409, 855CrossRefGoogle Scholar
Dijkstra, M., Haiman, Z., & Loeb, A. 2004, ApJ 613, 646CrossRefGoogle Scholar
Dunkley, J., et al. 2009, ApJS, 180, 306CrossRefGoogle Scholar
Eyles, L. P., Bunker, A. J., Stanway, E. R., Lacy, M., Ellis, R. S., & Doherty, M. 2005, MNRAS, 364, 443CrossRefGoogle Scholar
Eyles, L. P., Bunker, A. J., Ellis, R. S., Lacy, M., Stanway, E. R., Stark, D. P., & Chiu, K. 2007, MNRAS, 374, 910CrossRefGoogle Scholar
Fan, X., et al. , 2001, AJ, 122, 2833CrossRefGoogle Scholar
Fan, X., et al. 2006, AJ, 132, 117CrossRefGoogle Scholar
Giavalisco, M., et al. 2004, ApJ, 600, L103CrossRefGoogle Scholar
Gnedin, N. Y. & Ostriker, J. P. 1997, ApJ, 486, 581CrossRefGoogle Scholar
Gunn, J. E. & Peterson, B. A. 1965, ApJ, 142, 1633CrossRefGoogle Scholar
Hickey, S., Bunker, A. J., Jarvis, M., Chiu, K., & Bonfield, D., 2009, MNRAS, in press arXiv:0909.4205Google Scholar
Iye, M. et al. , 2006, Nature, 443, 186CrossRefGoogle Scholar
Kennicutt, R. C., 1998, ARA&A, 36, 189Google Scholar
Leitherer, C. & Heckman, T. M. 1995, ApJS, 96, 9CrossRefGoogle Scholar
Lorenzoni, S., Bunker, A. J., Wilkins, S., Stanway, E., Jarvis, M. J., & Caruana, J. 2011, MNRAS, 414, 1455CrossRefGoogle Scholar
Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., Fruchter, A., 1996, MNRAS, 283, 1388CrossRefGoogle Scholar
Madau, P., Pozzetti, L., & Dickinson, M., 1998, ApJ, 498, 106CrossRefGoogle Scholar
Madau, P., Haardt, F., & Rees, M., 1999, ApJ, 514, 648CrossRefGoogle Scholar
McLure, R. J., Cirasuolo, M., Dunlop, J. S., Foucaud, S., & Almaini, O. 2009, MNRAS, 395, 2196CrossRefGoogle Scholar
Ouchi, M., et al. 2008, ApJS, 176, 301CrossRefGoogle Scholar
Ota, K., et al. 2008, ApJ, 677, 12CrossRefGoogle Scholar
Pawlik, A. H., Schaye, J., & van Scherpenzeel, E. 2009, MNRAS, 394, 1812CrossRefGoogle Scholar
Reddy, N. A. & Steidel, C. C. 2009, ApJ, 692, 778CrossRefGoogle Scholar
Salpeter, E. E., 1955, ApJ, 121, 161CrossRefGoogle Scholar
Scalo, J. M. 1986, Fundamentals of Cosmic Physics, 11, 1Google Scholar
Shapley, A. E., Steidel, C. C., Pettini, M., Adelberger, K. L., & Erb, D. K. 2006, ApJ, 651, 688CrossRefGoogle Scholar
Spergel, D. N., et al. 2003, ApJS, 148, 175CrossRefGoogle Scholar
Stanway, E. R., Bunker, A. J., & McMahon, R. G., 2003, MNRAS, 342, 439CrossRefGoogle Scholar
Stanway, E. R., Glazebrook, K., Bunker, A. J., et al. 2004, ApJ, 604, L13CrossRefGoogle Scholar
Stanway, E. R., McMahon, R. G., & Bunker, A. J., 2005, MNRAS, 359, 1184CrossRefGoogle Scholar
Stark, D. P., Ellis, R. S., Bunker, A., Bundy, K., Targett, T., Benson, A., & Lacy, M. 2009, ApJ, 697, 1493CrossRefGoogle Scholar
Stark, D. P., Bunker, A. J., Ellis, R. S., Eyles, L. P., & Lacy, M. 2007, ApJ, 659, 84CrossRefGoogle Scholar
Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelberger, K. L., 1996, ApJ, 462, 17CrossRefGoogle Scholar
Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M., 1999, ApJ, 519, 1CrossRefGoogle Scholar
Stiavelli, M., Fall, S. M., & Panagia, N. 2004, ApJ, 610, L1CrossRefGoogle Scholar
Tanvir, N. R., et al. 2009, Nature, 461, 1254CrossRefGoogle Scholar
Wilkins, S. M., Bunker, A. J., Lorenzoni, S., & Caruana, J. 2011, MNRAS, 411, 23CrossRefGoogle Scholar
Wilkins, S. M., Bunker, A. J., Stanway, E. R., Lorenzoni, S., & Caruana, J. 2011b, MNRAS, 417, 717CrossRefGoogle Scholar
Yoshida, M., et al. , 2006, ApJ, 653, 988Google Scholar
Verma, A., Lehnert, M. D., Förster Schreiber, N. M., Bremer, M. N., & Douglas, L. 2007, MNRAS, 377, 1024CrossRefGoogle Scholar