Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T22:09:18.986Z Has data issue: false hasContentIssue false

Low-Γ jets from Compact Binary Mergers as Candidate Electromagnetic Counterparts to Gravitational Wave Sources

Published online by Cambridge University Press:  23 June 2017

Gavin P. Lamb
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, L3 5RF, UK email: [email protected]
Shiho Kobayashi
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, L3 5RF, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Compact binary mergers, with neutron stars or neutron star and black-hole components, are thought to produce various electromagnetic counterparts: short gamma-ray bursts (GRBs) from ultra-relativistic jets followed by broadband afterglow; semi-isotropic kilonova from radioactive decay of r-process elements; and late time radio flares; etc. If the jets from such mergers follow a similar power-law distribution of Lorentz factors as other astrophysical jets then the population of merger jets will be dominated by low-Γ values. The prompt gamma-rays associated with short GRBs would be suppressed for a low-Γ jet and the jet energy will be released as X-ray/optical/radio transients when a shock forms in the ambient medium. Using Monte Carlo simulations, we study the properties of such transients as candidate electromagnetic counterparts to gravitational wave sources detectable by LIGO/Virgo. Approximately 78% of merger-jets result in failed GRB with optical peaks 14-22 magnitude and an all-sky rate of 2-3 per year.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott, B. P., et al. 2016, arXiv:1606.04856Google Scholar
Copperwheat, C. M., Steele, I. A., Piascik, A. S., et al. 2016, MNRAS, 462, 3528 CrossRefGoogle Scholar
Metzger, B. D. & Berger, E. 2012, ApJ, 746, 48 CrossRefGoogle Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARA&A, 44, 507 Google Scholar
Nakar, E. 2007, Phys. Rep., 442, 166 CrossRefGoogle Scholar
Berger, E. 2014, ARA&A, 52, 43 Google Scholar
Tanvir, N. R., Levan, A. J., Fruchter, A. S., et al. 2013, Nature, 500, 547 CrossRefGoogle Scholar
Berger, E., Fong, W., & Chornock, R. 2013, ApJL, 774, L23 CrossRefGoogle Scholar
Tanaka, M. 2016, Advances in Astronomy, 2016, 634197 CrossRefGoogle Scholar
Nakar, E. & Piran, T. 2011, Nature, 478, 82 CrossRefGoogle Scholar
Hotokezaka, K., Nissanke, S., Hallinan, G., et al. 2016, arXiv:1605.09395Google Scholar
Cenko, S. B., Kulkarni, S. R., Horesh, A., et al. 2013, ApJ, 769, 130 CrossRefGoogle Scholar
Cenko, S. B., Urban, A. L., Perley, D. A., et al. 2015, ApJL, 803, L24 CrossRefGoogle Scholar
Saikia, P., Körding, E., & Falcke, H. 2016, MNRAS, 461, 297 CrossRefGoogle Scholar
Wanderman, D. & Piran, T. 2015, MNRAS, 448, 3026 CrossRefGoogle Scholar
Lamb, G. P. & Kobayashi, S. 2016, ApJ, 829, 112 CrossRefGoogle Scholar
Fong, W., Berger, E., Margutti, R., & Zauderer, B. A. 2015, ApJ, 815, 102 CrossRefGoogle Scholar
Kochanek, C. S. & Piran, T. 1993, ApJL, 417, L17 CrossRefGoogle Scholar
Ghirlanda, G., Ghisellini, G., Salvaterra, R., et al. 2013, MNRAS, 428, 1410 CrossRefGoogle Scholar