Article contents
Low-Γ jets from Compact Binary Mergers as Candidate Electromagnetic Counterparts to Gravitational Wave Sources
Published online by Cambridge University Press: 23 June 2017
Abstract
Compact binary mergers, with neutron stars or neutron star and black-hole components, are thought to produce various electromagnetic counterparts: short gamma-ray bursts (GRBs) from ultra-relativistic jets followed by broadband afterglow; semi-isotropic kilonova from radioactive decay of r-process elements; and late time radio flares; etc. If the jets from such mergers follow a similar power-law distribution of Lorentz factors as other astrophysical jets then the population of merger jets will be dominated by low-Γ values. The prompt gamma-rays associated with short GRBs would be suppressed for a low-Γ jet and the jet energy will be released as X-ray/optical/radio transients when a shock forms in the ambient medium. Using Monte Carlo simulations, we study the properties of such transients as candidate electromagnetic counterparts to gravitational wave sources detectable by LIGO/Virgo. Approximately 78% of merger-jets result in failed GRB with optical peaks 14-22 magnitude and an all-sky rate of 2-3 per year.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 12 , Symposium S324: New Frontiers in Black Hole Astrophysics , September 2016 , pp. 66 - 69
- Copyright
- Copyright © International Astronomical Union 2017
References
- 1
- Cited by