Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T07:20:17.021Z Has data issue: false hasContentIssue false

Looking at the distant universe with the MeerKAT Array (LADUMA)

Published online by Cambridge University Press:  17 August 2012

B. W. Holwerda
Affiliation:
European Space Agency (ESTEC), Keplerlaan 1, 2200 AV Noordwijk, The Netherlands email: [email protected]
S.-L. Blyth
Affiliation:
ACGC, Department of Astronomy, University of Cape Town, South Africa
A. J. Baker
Affiliation:
Rutgers University, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The MeerKAT (64 x 13.5m dish radio interferometer) is South Africa's precursor instrument for the Square Kilometre Array (SKA), exploring dish design, instrumentation, and the characteristics of a Karoo desert site and is projected to be on sky in 2016. One of two top-priority, Key Projects is a single deep field, integrating for 5000 hours total with the aim to detect neutral atomic hydrogen through its 21 cm line emission out to redshift unity and beyond. This first truly deep HI survey will help constrain fueling models for galaxy assembly and evolution. It will measure the evolution of the cosmic neutral gas density and its distribution over galaxies over cosmic time, explore evolution of the gas in galaxies, measure the Tully-Fisher relation, measure OH maser counts, and address many more topics. Here we present the observing strategy and envisaged science case for this unique deep field, which encompasses the Chandra Deep Field-South (and the footprints of GOODS, GEMS and several other surveys) to produce a singular legacy multi-wavelength data-set.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Balestra, I. et al. 2010, A&A 512 A12+Google Scholar
Bell, E. F. et al. 2005, ApJ, 625, 23Google Scholar
Booth, R. S. et al. 2009, ArXiv e-prints/0910.2935Google Scholar
Bouchard, A. et al. 2009, in Panoramic Radio Astronomy: Wide-field 1-2 GHz Research on Galaxy EvolutionGoogle Scholar
Briggs, F. H. 1998, A&A, 336, 815Google Scholar
Cardamone, C. N. et al. 2010, ApJS, 189, 270Google Scholar
Carilli, C. L. & Rawlings, S. 2004, New A Rev., 48, 979Google Scholar
de Blok, W. J. G. et al. 2009, in Panoramic Radio Astronomy: Wide-field 1-2 GHz Research on Galaxy EvolutionGoogle Scholar
Driver, S. P. et al. 1998, ApJ 496 L93+Google Scholar
Holwerda, B. & Blyth, S. 2010a, in ISKAF2010 Science MeetingGoogle Scholar
Holwerda, B. W. & Blyth, S. 2010b, ArXiv e-prints/1007.4101Google Scholar
Holwerda, B.W. et al. 2011a, in Bulletin of the AAS, Vol. 43, Abstract #217, #433.17Google Scholar
Holwerda, B. W. et al. 2011b, ArXiv e-printsGoogle Scholar
Hopkins, P. F. et al. 2008, ApJ, 679, 156Google Scholar
Kanekar, N. et al. 2009, MNRAS, 396, 385Google Scholar
Kannappan, S. J. 2004, ApJ, 611, L89.Google Scholar
Kassin, S. A. et al. 2007, ApJ, 660, L35.Google Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541Google Scholar
Lah, P. et al. 2007, MNRAS, 376, 1357Google Scholar
Madau, P. et al. 1998, ApJ, 498, 106Google Scholar
Ménard, B. & Chelouche, D. 2009, MNRAS, 393, 808Google Scholar
Noeske, K. G. et al. 2007, ApJ, 660, L47.Google Scholar
Noterdaeme, P. et al. 2009, A&A, 505, 1087Google Scholar
Obreschkow, D. et al. 2009, ApJ, 703, 1890Google Scholar
Prochaska, J. X. et al. 2005, ApJ, 635, 123Google Scholar
Puech, M. et al. 2010, A&A 510 A68+Google Scholar
Rao, S. M. et al. 2006, ApJ, 636, 610Google Scholar
Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661Google Scholar
van der Heyden, K. et al. 2009, in Panoramic Radio Astronomy: Wide-field 1-2 GHz Research on Galaxy EvolutionGoogle Scholar
Zwaan, M. A. et al. 2005, MNRAS, 359, L30.Google Scholar