Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T03:10:21.288Z Has data issue: false hasContentIssue false

Long-term variability of the solar cycle in the Babcock-Leighton dynamo framework

Published online by Cambridge University Press:  27 November 2018

Bidya Binay Karak
Affiliation:
Indian Institute of Astrophysics, Koramangala, Bangalore 560034, India email: [email protected]
Mark Miesch
Affiliation:
National Center for Atmospheric Research, 3080 Center Green Dr., Boulder, CO 80301, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We explore the cause of the solar cycle variabilities using a novel 3D Babcock–Leighton dynamo model. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with statistical properties obtained from observed distributions. We find that a little quenching in BMR tilt is sufficient to stabilize the dynamo growth. The randomness and nonlinearity in the BMR emergences make the poloidal field unequal and cause some variability in the solar cycle. However, when observed scatter of BMR tilts around Joy’s law with a standard deviation of 15°, is considered, our model produces a variation in the solar cycle, including north-south asymmetry comparable to the observations. The morphology of magnetic fields closely resembles observations, in particular the surface radial field possesses a more mixed polarity field. Observed scatter also produces grand minima. In 11,650 years of simulation, 17 grand minima are detected and 11% of its time the model remained in these grand minima. When we double the tilt scatter, the model produces correct statistics of grand minima. Importantly, the dynamo continues even during grand minima with only a few BMRs, without requiring any additional alpha effect. The reason for this is the downward magnetic pumping which suppresses the diffusion of the magnetic flux across the surface. The magnetic pumping also helps to achieve 11-year magnetic cycle using the observed BMR flux distribution, even at the high diffusivity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P. et al. 2014, Space Sci. Rev., 186, 561Google Scholar
Karak, B. B., 2010, Astrophys. J, 724, 1021Google Scholar
Karak, B. B. & Choudhuri, A. R., 2011, MNRAS, 410, 1503Google Scholar
Karak, B. B. & Choudhuri, A. R., 2012, Sol Phys, 278, 137Google Scholar
Karak, B. B. & Choudhuri, A. R., 2013, Res. Astron. Astrophys., 13, 1339Google Scholar
Karak, B. B. & Cameron, R., 2016, Astrophys. J, 832, 94Google Scholar
DeRosa, M. L., Brun, A. S., & Hoeksema, J. T., 2012, Astrophys. J, 757, 96Google Scholar
Usoskin, I. G., Solanki, S. K., & Kovaltsov, G. A., 2007, Astrophys. J, 471, 301Google Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J., 2007, Physical Review Letters, 98, 131103Google Scholar
Jiang, J., Cameron, R. H., & Schüssler, M., 2014, Astrophys. J, 791, 5Google Scholar
Choudhuri, A. R. & Karak, B. B., 2009, Res. Astron. Astrophys., 9, 953Google Scholar
Choudhuri, A. R. & Karak, B. B., 2012, Phys. Rev. Lett., 109, 171103Google Scholar
Dasi-Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R. et al. 2010, Astrophys. J, 518, A7Google Scholar
Miesch, M. S. & Dikpati, M., 2014, Astrophys. J, 785, L8Google Scholar
Miesch, M. S. & Teweldebirhan, K. 2016, Space Sci. Rev.Google Scholar
Karak, B. B. & Miesch, M. S., 2017, Astrophys. J, 847, 69Google Scholar
Karak, B. B. & Miesch, M. S., 2018, Astrophys. J, Lett., 860, L26Google Scholar
Passos, D., Nandy, D., Hazra, S., & Lopes, I., 2014, Astrophys. J, 563, A18Google Scholar
Lemerle, A. & Charbonneau, P., 2017, Astrophys. J, 834, 133Google Scholar
Hazra, G., Choudhuri, A. R., & Miesch, M. S., 2017, Astrophys. J, 835, 39Google Scholar
Stenflo, J. O. & Kosovichev, A. G., 2012, Astrophys. J, 745, 129Google Scholar
Mandal, S., Karak, B. B., & Banerjee, D., 2017, Astrophys. J, 851, 70Google Scholar
McIntosh, S. W., et al. 2013, Astrophys. J, 765, 146Google Scholar
Augustson, K., Brun, A. S., Miesch, M., & Toomre, J., 2015, Astrophys. J, 809, 149Google Scholar
Karak, B. B. and Kitchatinov, L. L., & Brandenburg, A., 2015, Astrophys. J, 803, 95Google Scholar
Käpylä, M. J., Käpylä, P. J., Olspert, N., Brandenburg, , et al. 2016, Astrophys. J, 589, A56Google Scholar