Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-10-28T04:28:39.148Z Has data issue: false hasContentIssue false

Long-term stability and dynamical spacing of compact planetary systems

Published online by Cambridge University Press:  16 October 2024

Antoine C. Petit*
Affiliation:
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Exoplanet detection surveys revealed the existence of numerous multi-planetary systems packed close to their stability limit. In this proceeding, we review the mechanism driving the instability of compact systems, originally published in (Petit et al. 2020). Compact systems dynamics are dominated by the interactions between resonances involving triplets of planets. The complex network of three-planet mean motion resonances drives a slow chaotic semi-major axes diffusion, leading to a fast and destructive scattering phase. This model reproduces quantitatively the instability timescale found numerically. We can observe signpost of this process on exoplanet systems architecture. The critical spacing ensuring stability scales as the planet-to star mass ratio to the power 1/4. It explains why the Hill radius is not an adapted measure of dynamical compactness of exoplanet systems, particularly for terrestrial planets. We also provide some insight on the theoretical tools developped in the original work and how they can be of interest in other problems.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Batygin, K., Mardling, R. A., & Nesvorný, D. 2021, The Astrophysical Journal, 920, 148 CrossRefGoogle Scholar
Chambers, J., Wetherill, G., & Boss, A. 1996, Icarus, 119, 261 CrossRefGoogle Scholar
Chirikov, B. V. 1979, Physics Reports, 52, 263 CrossRefGoogle Scholar
Faber, P. & Quillen, A. C. 2007, Monthly Notices of the Royal Astronomical Society, 382, 1823 CrossRefGoogle Scholar
Fabrycky, D. C., Lissauer, J. J., Ragozzine, D., et al. 2014, The Astrophysical Journal, 790, 146 CrossRefGoogle Scholar
Gladman, B. 1993, Icarus, 106, 247 CrossRefGoogle Scholar
Hadden, S. 2019, AJ, 158, 238 CrossRefGoogle Scholar
Hadden, S. & Lithwick, Y. 2018, The Astronomical Journal, 156, 95 CrossRefGoogle Scholar
He, M. Y., Ford, E. B., Ragozzine, D., & Carrera, D. 2020, The Astronomical Journal, 160, 276 CrossRefGoogle Scholar
Hussain, N. & Tamayo, D. 2020, Monthly Notices of the Royal Astronomical Society, 491, 5258 CrossRefGoogle Scholar
Izidoro, A., Ogihara, M., Raymond, S. N., et al. 2017, Monthly Notices of the Royal Astronomical Society, 470, 1750 CrossRefGoogle Scholar
Johansen, A., Davies, M. B., Church, R. P., & Holmelin, V. 2012, The Astrophysical Journal, 758, 39 CrossRefGoogle Scholar
Laskar, J. 1997, Astronomy and Astrophysics, 317, L75 Google Scholar
Laskar, J. & Petit, A. C. 2017, Astronomy & Astrophysics, 605, A72 CrossRefGoogle Scholar
Marchal, C. & Bozis, G. 1982, Celestial Mechanics, 26, 311 CrossRefGoogle Scholar
Marcy, G. W., Isaacson, H., Howard, A. W., et al. 2014, The Astrophysical Journal Supplement Series, 210, 20 CrossRefGoogle Scholar
Morbidelli, A. & Vergassola, M. 1997, Journal of Statistical Physics, 89, 549 CrossRefGoogle Scholar
Murchikova, L. & Tremaine, S. 2020, The Astronomical Journal, 160, 160 CrossRefGoogle Scholar
Obertas, A., Van Laerhoven, C., & Tamayo, D. 2017, Icarus, 293, 52 CrossRefGoogle Scholar
Petit, A. C. 2021, Celestial Mechanics and Dynamical Astronomy, 133, 39 CrossRefGoogle Scholar
Petit, A. C., Laskar, J., & Boué, G. 2017, Astronomy and Astrophysics, 607, A35 CrossRefGoogle Scholar
Petit, A. C., Laskar, J., & Boué, G. 2018, Astronomy & Astrophysics, 617, A93 CrossRefGoogle Scholar
Petit, A. C., Pichierri, G., Davies, M. B., & Johansen, A. 2020, Astronomy and Astrophysics, 641, A176 CrossRefGoogle Scholar
Pichierri, G. & Morbidelli, A. 2020, Monthly Notices of the Royal Astronomical Society, 494, 4950 CrossRefGoogle Scholar
Pu, B. & Wu, Y. 2015, The Astrophysical Journal, 807, 44 Google Scholar
Quillen, A. C. 2011, Monthly Notices of the Royal Astronomical Society, 418, 1043 CrossRefGoogle Scholar
Smith, A. W. & Lissauer, J. J. 2009, Icarus, 201, 381 CrossRefGoogle Scholar
Tamayo, D., Murray, N., Tremaine, S., & Winn, J. 2021, The Astronomical Journal, 162, 220 CrossRefGoogle Scholar
Weiss, L. M., Marcy, G. W., Petigura, E. A., et al. 2018, The Astronomical Journal, 155, 48 CrossRefGoogle Scholar
Wisdom, J. 1980, The Astronomical Journal, 85, 1122 CrossRefGoogle Scholar
Xie, J.-W., Dong, S., Zhu, Z., et al. 2016, Proceedings of the National Academy of Sciences, 113, 11431 Google Scholar
Zhu, W. 2020, The Astronomical Journal, 159, 188 CrossRefGoogle Scholar