Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T17:23:41.107Z Has data issue: false hasContentIssue false

A long-duration active region: Evolution and quadrature observations of ejective events

Published online by Cambridge University Press:  12 September 2017

H. Cremades
Affiliation:
Universidad Tecnológica Nacional – Facultad Regional Mendoza, CEDS Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Rodríguez 243, 5500, Mendoza, Argentina email: [email protected]
C. H. Mandrini
Affiliation:
Instituto de Astronomía y Física del Espacio (IAFE, UBA-CONICET), Buenos Aires, Argentina Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
M. C. López Fuentes
Affiliation:
Instituto de Astronomía y Física del Espacio (IAFE, UBA-CONICET), Buenos Aires, Argentina
L. Merenda
Affiliation:
Universidad Tecnológica Nacional – Facultad Regional Mendoza, CEDS
I. Cabello
Affiliation:
Universidad Tecnológica Nacional – Facultad Regional Mendoza, CEDS Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Rodríguez 243, 5500, Mendoza, Argentina email: [email protected]
F. M. López
Affiliation:
Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE), CONICET-UNSJ, San Juan, Argentina
M. Poisson
Affiliation:
Instituto de Astronomía y Física del Espacio (IAFE, UBA-CONICET), Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Unknown aspects of the initiation, evolution, and associated phenomena of coronal mass ejections (CMEs), together with their capability of perturbing the fragile technological equilibrium on which nowadays society depends, turn them a compelling subject of study. While space weather forecasts are thus far not able to predict when and where in the Sun will the next CME take place, various CME triggering mechanisms have been proposed, without reaching consensus on which is the predominant one. To improve our knowledge in these respects, we investigate a long-duration active region throughout its life, from birth until decay along five solar rotations, in connection with its production of ejective events. We benefit from the wealth of solar remote-sensing data with improved temporal, spatial, and spectral resolution provided by the ground-breaking space missions STEREO, SDO, and SOHO. During the investigated time interval, which covers the months July – November 2010, the STEREO spacecraft were nearly 180 degrees apart, allowing for the uninterrupted tracking of the active region and its ensuing CMEs. The ejective aspect is examined from multi-viewpoint coronagraphic images, while the dynamics of the active region photospheric magnetic field are inspected by means of SDO/HMI data for specific subintervals of interest. The ultimate goal of this work in progress is to identify common patterns in the ejective aspect that can be connected with the active region characteristics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bobra, M. G., Sun, X., Hoeksema, J. T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., & Leka, K. D., 2014, Solar Phys., 289, 3549 Google Scholar
Brueckner, G. E. et al., 1995, Solar Phys., 162, 357 CrossRefGoogle Scholar
Cremades, H., Mandrini, C. H., Schmieder, B., & Crescitelli, A. M., 2015, Solar Phys., 290, 1671 Google Scholar
Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L., Thompson, B. J., Plunkett, S., Kovári, Z., Aulanier, G., & Young, A., 2002, A&A, 382, 650 Google Scholar
Domingo, V., Fleck, B., & Poland, A. I., 1995, Solar Phys., 162, 1 CrossRefGoogle Scholar
Forbes, T. G., 2000, J. Geophys. Res., 105, 23153 CrossRefGoogle Scholar
Gopalswamy, N. 2010, in: Dorotovic, I. (ed.), 20th National Solar Physics Meeting, p. 108 Google Scholar
Green, L. M., López fuentes, M. C., Mandrini, C. H., Démoulin, P., Van Driel-Gesztelyi, L., & Culhane, J. L., 2002, Solar Phys., 208, 43 CrossRefGoogle Scholar
Gopalswamy, N., Lara, A., Yashiro, S., Nunes, S., & Howard, R. 2003, in: Wilson, A. (ed.), Solar Variability as an Input to the Earth's Environment, ESA Special Publication, 535, p. 403 Google Scholar
Guo, Y., Démoulin, P., Schmieder, B., Ding, M. D., Vargas Domínguez, S., & Liu, Y., 2013, A&A, 555, A19 Google Scholar
Howard, R. A., et al. 2008, Space Sci. Revs, 136, 67 Google Scholar
Kaiser, M. L., Kucera, T. A., Davila, J. M., St.Cyr, O. C., Guhathakurta, M., & Christian, E., 2008, Space Sci. Revs, 136, 5 CrossRefGoogle Scholar
Lara, A., Gopalswamy, N., Xie, H., Mendoza-Torres, E., PéRez-EríQuez, R., & Michalek, G., 2006, J. Geophys. Res., 111, A06107 Google Scholar
Lemen, J. R. et al., 2012, Solar Phys., 275, L17 Google Scholar
Liu, L., Wang, Y., Wang, J., Shen, C., Ye, P., Liu, R., Chen, J., Zhang, Q., & Wang, S., 2016, ApJ, 826, 119 Google Scholar
Mandrini, C. H., Schmieder, B., Démoulin, P., Guo, Y., & Cristiani, G. D., 2014, Solar Phys., 289, L2041 CrossRefGoogle Scholar
Pesnell, W., Thompson, B. J., & Chamberlin, P. C., 2012, Solar Phys., 275, 3 CrossRefGoogle Scholar
Petrie, G. J., 2013, ApJ, 768, 162 Google Scholar
Riley, P., Schatzman, C., Cane, H. V., Richardson, I. G., & Gopalswamy, N., 2006, ApJ, 647, 648 Google Scholar
Robbrecht, E. and Berghmans, D., 2004, A&A, 425, 1097 Google Scholar
Schrijver, C. J. & Zwann, C., 2000, Irish Astronomical Journal, 27, 234 Google Scholar
Scherrer, P. H. et al., 1995, Solar Phys., 162, 129 CrossRefGoogle Scholar
Scherrer, P. H. et al., 2012, Solar Phys., 275, 207 Google Scholar
van Driel-Gesztelyi, L. & Green, L. M., 2015, Living Rev. Sol. Phys, 12, 1 Google Scholar
Yashiro, S., Gopalswamy, N., Michalek, G., St.Cyr, O. C., Plunkett, S. P., Rich, N. B., & Howard, R. A., 2004, J. Geophys. Res., 109, A07105 Google Scholar
Zuccarello, F., Guglielmino, S. L., & Romano, P., 2014, ApJ, 787, 57 CrossRefGoogle Scholar