Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T13:27:02.169Z Has data issue: false hasContentIssue false

LOFAR and Radio-Loud AGN

Published online by Cambridge University Press:  09 February 2015

Wendy L. Williams*
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands Netherlands Institute for Radio Astronomy (ASTRON), PO Box 2, 7990AA Dwingeloo, The Netherlands
Huub J. A. Röttgering*
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At very low frequencies, the new pan-European radio telescope, LOFAR, is opening the last unexplored window of the electromagnetic spectrum for astrophysical studies. Operating at frequencies from 15 to 240 MHz, its superb sensitivity, high angular resolution, large field of view and flexible spectroscopic capabilities represent a dramatic improvement over previous facilities at these wavelengths. LOFAR will carry out a broad range of fundamental astrophysical studies in a number of key science topics including the formation and evolution of clusters, galaxies and black holes. In this contribution we describe some of the capabilities of LOFAR and present some recent results from the ongoing imaging efforts. We also discuss the impact of LOFAR on our studies of radio-loud AGN. Our recent study of the evolution of radio-loud AGN as a function of host stellar mass shows a clear increase in the fraction of lower mass galaxies which host radio-loud AGN at 1 < z < 2 while the fraction for higher mass galaxies remains the same. This shows that the upturn in the radio luminosity function is driven by increasing AGN activity among low mass galaxies at higher redshifts. New LOFAR observations will allow us to build statistically large samples at high redshifts to constrain this evolution for the different accretion modes of AGN.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Best, P. N., Kauffmann, G., Heckman, T. M., Brinchmann, J., et al. 2005, MNRAS, 362, 25CrossRefGoogle Scholar
Best, P. N. & Heckman, T. M. 2012 MNRAS, 421, 1569CrossRefGoogle Scholar
de Gasperin, F., Orrú, E., Murgia, M., et al. 2012, A&A, 547, A56Google Scholar
Hickox, R. C., Jones, C., Forman, W. R., et al. 2009, ApJ, 696, 891Google Scholar
Janssen, R. M. J., Röttgering, H. J. A., Best, P. N., & Brinchmann, J., 2012, A&A, 541, A62Google Scholar
Laing, R. A., Jenkins, C. R., Wall, J. V., et al. 1994, The Physics of Active Galaxies, 54, 201Google Scholar
Muzzin, A., Marchesini, D., Stefanon, M., et al. 2013, ApJS, 206, 8Google Scholar
Narayan, R. & Yi, I. 1995, ApJ, 452, 710Google Scholar
Rigby, E. E., Best, P. N., Brookes, M. H., et al. 2011, MNRAS, 416, 1900Google Scholar
Röttgering, H. J. A. 2010, ISKAF2010 Science MeetingGoogle Scholar
Schinnerer, E., Carilli, C. L., Scoville, N. Z., et al. 2004, AJ, 128, 1974Google Scholar
Schinnerer, E., Smolčić, V., Carilli, C. L., et al. 2007, ApJS, 172, 46Google Scholar
Schmidt, M., 1968, ApJ, 151, 393Google Scholar
Tadhunter, C. N., Morganti, R., Robinson, A., et al. 1998, MNRAS, 298, 1035CrossRefGoogle Scholar
van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2Google Scholar
Yatawatta, S., de Bruyn, A. G., Brentjens, M. A., et al. 2013, A&A, 550, A136Google Scholar