Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T08:03:13.852Z Has data issue: false hasContentIssue false

Local tests of gravitation with Gaia observations of Solar System Objects

Published online by Cambridge University Press:  07 March 2018

Aurélien Hees
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA email: [email protected]
Christophe Le Poncin-Lafitte
Affiliation:
SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, LNE, 61 avenue de l'Observatoire, 75014 Paris, France
Daniel Hestroffer
Affiliation:
IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau, 75014 Paris, France
Pedro David
Affiliation:
IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau, 75014 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this proceeding, we show how observations of Solar System Objects with Gaia can be used to test General Relativity and to constrain modified gravitational theories. The high number of Solar System objects observed and the variety of their orbital parameters associated with the impressive astrometric accuracy will allow us to perform local tests of General Relativity. In this communication, we present a preliminary sensitivity study of the Gaia observations on dynamical parameters such as the Sun quadrupolar moment and on various extensions to general relativity such as the parametrized post-Newtonian parameters, the fifth force formalism and a violation of Lorentz symmetry parametrized by the Standard-Model extension framework. We take into account the time sequences and the geometry of the observations that are particular to Gaia for its nominal mission (5 years) and for an extended mission (10 years).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Will, C., 2014, Living Rev. Relativ., 17, 04 CrossRefGoogle Scholar
Fienga, A., Manche, H., Laskar, J., Gastineau, M., & Verma, A. 2013, arXiv:1301.1510Google Scholar
Hestroffer, D., Mouret, S., Mignard, F., Tanga, P., & Berthier, J. 2010, in: Klioner, S. A., Seidelmann, P. K. & Soffel, M. H., (eds.) Proceedings of the International Astronomical Union, (Cambridge University Press), 5(S261), p. 325CrossRefGoogle Scholar
Mouret, S., 2011, Phys. Rev. D, 84, 122001 CrossRefGoogle Scholar
Hees, A., Hestroffer, D., Le Poncin-Lafitte, C., & David, P. 2015, in: Martins, F., Boissier, S., Buat, V., Cambrésy, L., & Petit, P. (eds.), Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, p. 125Google Scholar
Bertotti, B., Iess, L., & Tortora, P., 2003, Nature, 425, 374 CrossRefGoogle Scholar
Mignard, F. & Klioner, S. 2010, in: Klioner, S. A., Seidelmann, P. K. & Soffel, M. H., (eds.) Proceedings of the International Astronomical Union, (Cambridge University Press), 5(S261), p. 306CrossRefGoogle Scholar
Fienga, A., Laskar, J., Exertier, P., Manche, H., & Gasineau, M., 2015, Celest. Mech. Dyn. Astr., 123, 325 CrossRefGoogle Scholar
Hees, A., Do, T., Ghez, A. M. et al., 2017, Phys. Rev. Letters, 118, 211101 CrossRefGoogle Scholar
Bailey, Q. & Kostelecký, V. A. 2006, Phys. Rev. D, 74, 045001CrossRefGoogle Scholar
Hees, A., Bailey, Q., Bourgoin, A., Pihan-La Bars, H., Guerlin, C., & Le Poncin-Lafitte, C., Universe, 2, 30 CrossRefGoogle Scholar