Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T07:46:34.868Z Has data issue: false hasContentIssue false

Local analogs of high-redshift galaxies: Interstellar medium conditions

Published online by Cambridge University Press:  21 March 2017

Fuyan Bian
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT, 2611Australia email: [email protected]
Lisa J. Kewley
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT, 2611Australia email: [email protected]
Michael A. Dopita
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT, 2611Australia email: [email protected]
Stephanie Juneau
Affiliation:
CEA-Saclay, DSM/IRFU/SAp, 91191 Gif-sur-Yvette, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Local analog galaxies play an important role in understanding the properties of high-redshift galaxies. We present a method to select a type of local analog that closely resembles the ionized interstellar medium conditions in high-redshift galaxies. These galaxies are selected based on their locations in the [O III]/Hβ versus [N II]/Hα nebular emission-line diagnostic diagram. The ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2 − 3 galaxies, but higher than those in normal SDSS galaxies by ≃ 0.6 dex and ≃ 0.9 dex, respectively. We find that the high sSFR and SFR surface density can enhance the electron densities and the ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5 CrossRefGoogle Scholar
Bian, F., Fan, X., Bechtold, J., et al. 2010, ApJ, 725, 1877 CrossRefGoogle Scholar
Bian, F., Kewley, L., Dopita, M., & Juneau, S. 2016, ApJ, 822, 62 Google Scholar
Juneau, S., Bournaud, F., Charlot, S., et al. 2014, ApJ, 788, 88 CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33 CrossRefGoogle Scholar
Kewley, L. J., Maier, C., Yabe, K., et al. 2013, ApJL, 774, L10 CrossRefGoogle Scholar
Nakajima, K. & Ouchi, M. 2014, MNRAS, 442, 900 CrossRefGoogle Scholar
Salim, S., Lee, J., Davé, R., et al. 2015, ApJ, 808, 25 Google Scholar
Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2016, ApJ, 816, 23 CrossRefGoogle Scholar
Shapley, A. E., Reddy, N. A., Kriek, M., et al. 2015, ApJ, 801, 88 CrossRefGoogle Scholar
Steidel, C. C., Shapley, A. E., Pettini, M., et al. 2004, ApJ, 604, 534 CrossRefGoogle Scholar
Steidel, C. C., Rudie, G. C., Strom, A. L., et al. 2014, ApJ, 795, 165 CrossRefGoogle Scholar