Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T18:48:30.744Z Has data issue: false hasContentIssue false

Local active black hole mass functions

Published online by Cambridge University Press:  01 August 2006

Jenny E. Greene
Affiliation:
Department of Astronomy, Princeton University, Princeton, NJ 08544, USA email: [email protected]
Luis C. Ho
Affiliation:
The Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While black holes (BHs) are apparently a ubiquitous component of the nuclei of local spheroids, their role in galaxy evolution remains largely unknown. The tight correlations between galaxy spheroid properties and BH mass provide an important boundary condition for models of the coevolution of BHs and galaxies. Here we consider another important boundary condition: the local mass function of broad-line active galaxies. We use standard virial mass estimation techniques to examine the distribution of BH masses and accretion rates for active galaxies in the local universe, and we also compare the distribution of BH masses in local broad and narrow-line objects, and find that both populations have a characteristic mass of ∼107M. Most importantly, this is the first BH mass function to consider BH with masses ∼106M. The space density of this important population allows us to place constraints on potential mechanisms for the creation of seed BHs in the early Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Adelman-McCarthy, J. K. et al. 2006, apjs, 162, 38Google Scholar
Greene, J. E., Ho, L. C. 2005, ApJ, 630, 122CrossRefGoogle Scholar
Greene, J. E., Ho, L. C. 2004, ApJ, 610, 722Google Scholar
Haehnelt, M. G. 2004, in Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. Ho, L. C. (Cambridge: Cambridge Univ. Press), 405Google Scholar
Hao, L. et al. 2005, AJ, 129, 1783Google Scholar
Heckman, T. M., Kauffmann, G., Brinchmann, J., Charlot, S., Tremonti, C. & White, S. D. M. 2004, ApJ, 613, 109Google Scholar
Ho, L. C. 2004, in Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. Ho, L. C. (Cambridge: Cambridge Univ. Press), 292Google Scholar
Hughes, S. A. 2002, MNRAS, 331, 805Google Scholar
Kaspi, S., Maoz, D., Netzer, H., Peterson, B. M., Vestergaard, M. & Jannuzi, B. T. 2005, ApJ, 629, 61Google Scholar
Marconi, A., Hunt, L. K. 2003, ApJ, 589, L21CrossRefGoogle Scholar
Marconi, A., Risaliti, G., Gilli, R., Hunt, L. K., Maiolino, R. & Salvati, M. 2004, MNRAS, 351, 169Google Scholar
Masters, K. L., Springob, C. M., Haynes, M. P. & Giovanelli, R. 2006, ApJ, in press (astro-ph/0609249)Google Scholar
Pizzella, A., Corsini, E. M., Dalla, Bontà E., Sarzi, M., Coccato, L. & Bertola, F. 2005, ApJ, 631, 785Google Scholar
Tremaine, S. et al. 2002, ApJ, 574, 740Google Scholar
Yu, Q., Tremaine, S. 2002, MNRAS, 335, 965Google Scholar