Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T19:09:03.107Z Has data issue: false hasContentIssue false

Linking supernovae and supernova remnants. Time-dependent injection in SN1987A and gamma-ray spectrum of IC443

Published online by Cambridge University Press:  17 October 2017

O. Petruk
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy Inst. Appl. Probl. in Mechanics and Mathematics, Naukova Street, 3-b Lviv 79060, Ukraine
S. Orlando
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
M. Miceli
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy Dip. di Fisica e Chimica, Univ. di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Acceleration times of particles responsible for the gamma-rays in supernova remnants (SNRs) are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. In order to analyse this effect, we consider the time variation of the radio spectral index in SN1987A and solution of the non-stationary equation for particle acceleration. We reconstruct evolution of the particle injection in SN1987A, apply it to derive the particle momentum distribution in IC443 and model its gamma-ray spectrum. We show that: i) observed break in the proton spectrum around 50 GeV in IC443 is a consequence of the variation of the cosmic ray injection; ii) shape of the hadronic gamma-ray spectrum in SNRs critically depends on the temporal variation of the cosmic ray injection in the immediate post explosion phases.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Acciari, V. et al. 2009, ApJ, 698, L133 CrossRefGoogle Scholar
Ackermann, M. et al. 2013, Science, 339, 807 CrossRefGoogle Scholar
Ackermann, M. et al. 2016 A&A, 586, 71 Google Scholar
Albert, J. et al. 2007, ApJ, 664, L87 CrossRefGoogle Scholar
Drury, L. 1983, Rep. Prog. Phys., 46, 973 CrossRefGoogle Scholar
Forman, M., Drury, L. 1983, Proc. 18th ICRC, 2, 267 Google Scholar
Jones, F. 1990, ApJ, 361, 162 Google Scholar
H. E. S. S. Collaboration 2015, Science, 347, 406 CrossRefGoogle Scholar
Kelner, S., Aharonian, F., Bugayov, V. 2006, Phys. Rev. D, 74, 034018 CrossRefGoogle Scholar
Orlando, S., Miceli, M., Pumo, M., Bocchino, F. 2015, ApJ, 810, 168 CrossRefGoogle Scholar
Petruk, O., Kopytko, B. 2016, MNRAS, 462, 3104 Google Scholar
Petruk, O., Orlando, S., Miceli, M., Bocchino, F. 2017, submittedGoogle Scholar
Skilling, J. 1975, MNRAS, 172, 557 Google Scholar
Zanardo, G., Staveley-Smith, L., Hg, C.-Y. et al. 2013, ApJ, 767, 98 Google Scholar