Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:34:27.880Z Has data issue: false hasContentIssue false

The Link between Hot and Cool Outflows

Published online by Cambridge University Press:  30 November 2022

Jorick S. Vink
Affiliation:
Armagh Observatory and Planetarium, College Hill, BT61 9DG, Armagh, Northern Ireland email: [email protected]
A.A.C. Sander
Affiliation:
Armagh Observatory and Planetarium, College Hill, BT61 9DG, Armagh, Northern Ireland email: [email protected]
E.R. Higgins
Affiliation:
Armagh Observatory and Planetarium, College Hill, BT61 9DG, Armagh, Northern Ireland email: [email protected]
G.N. Sabhahit
Affiliation:
Armagh Observatory and Planetarium, College Hill, BT61 9DG, Armagh, Northern Ireland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The link between hot and cool stellar outflows is shown to be critical for correctly predicting the masses of the most massive black holes (BHs) below the so-called pair-instability supernova (PISN) mass gap. Gravitational Wave (GW) event 190521 allegedly hosted an “impossibly” heavy BH of 85 M . Here we show how our increased knowledge of both metallicity Z and temperature dependent mass loss is critical for our evolutionary scenario of a low-Z blue supergiant (BSG) progenitor of an initially approx 100 M star to work. We show using MESA stellar evolution modelling experiments that as long as we can keep such stars above 8000 K such low-Z BSGs can avoid strong winds, and keep a very large envelope mass intact before core collapse. This naturally leads to the Cosmic Time dependent maximum BH function below the PISN gap.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, R. et al. 2020, PhRvL, 125, 1102 Google Scholar
Björklund, R., Sundqvist, J.O., Puls, J., Najarro, F. 2021, A&A, 648, 36 Google Scholar
Brott, I., et al. 2011, A&A, 530, 115 Google Scholar
Farmer, R., Renzo, M., de Mink, S.E., Marchant, P., Justham, S. 2019, ApJ, 887, 53 CrossRefGoogle Scholar
Fernandez, R., Quataert, E., Kashiyama, K., Coughlin, E.R. 2018, MNRAS, 476, 2366 CrossRefGoogle Scholar
Gilkis, A., et al. 2021, MNRAS, 503, 1884 CrossRefGoogle Scholar
Grassitelli, L., et al. 2021, A&A, 647, 99 Google Scholar
Higgins, E.R., & Vink, J.S. 2019, A&A, 622, 50 Google Scholar
de Jager, C., Nieuwenhuijzen, H., van der Hucht, K.A. 1988, A&AS, 72, 259 Google Scholar
Koumpia, E., et al. 2020, A&A, 635, 183 Google Scholar
Nugis, T., & Lamers, H.J.G.L.M. 2000, A&A, 360, 227 Google Scholar
Paxton, B., et al. 2013, ApJS, 208, 4 CrossRefGoogle Scholar
Petrov, B., Vink, J.S., & Grafener, G. 2016, MNRAS, 458, 1999 CrossRefGoogle Scholar
Sabhahit, G.N., Vink, J.S., Higgins, E.R., Sander, A.A.C. 2021, MNRAS, 506, 4473 CrossRefGoogle Scholar
Vink, J.S., de Koter, A., & Lamers, H.J.G.L.M. 1999, A&A, 350, 181 Google Scholar
Vink, J.S., de Koter, A., & Lamers, H.J.G.L.M. 2001, A&A, 369, 574 Google Scholar
Vink, J.S., & de Koter, A. 2005, A&A, 442, 587 Google Scholar
Vink, J.S., & Sander, A.A.C. 2021, MNRAS, 504, 2051 CrossRefGoogle Scholar
Vink, J.S., Higgins, E.R., Sander, A.A.C., Sabhahit, G.N. 2021, MNRAS, 504, 146 CrossRefGoogle Scholar
Vink, J.S. 2022, ARAA, in press. ArXiv 2109.08164Google Scholar
Woosley, S., & Heger, A. 2021, ApJ, 912, 31 CrossRefGoogle Scholar