Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T06:56:46.676Z Has data issue: false hasContentIssue false

Line-Profile Variations on Massive Binary Systems: Determining η Carinae Orbital Parameters

Published online by Cambridge University Press:  12 July 2007

D. Falceta-Gonçalves
Affiliation:
Instituto de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, Brazil email: [email protected]
Z. Abraham
Affiliation:
Instituto de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, Brazil email: [email protected]
V. Jatenco-Pereira
Affiliation:
Instituto de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When the winds of two massive stars orbiting each other collide, an interaction zone is created consisting of two shock fronts at both sides of a contact surface. During the cooling process, elements may recombine generating spectral lines. These lines may be Doppler shifted, as the gas stream flows over the interaction zone. To calculate the stream velocity projected into the line of sight we use a simplified conical geometry for the shock fronts and, to determine the synthetic line profile, we have to sum the amount of emitting gas elements with the same Doppler shifted velocity. We show that the stellar mass loss rates and wind velocities, and the orbital inclination and eccentricity, are the main parameters on this physical process. By comparing observational data to the synthetic line profiles it is possible to determine these parameters. We tested this process to Brey 22 WR binary system, and applied to the enigmatic object of η Carinae.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Abraham, Z., Falceta-Gonçalves, D., Dominici, T., Caproni, A. & Jatenco-Pereira, V. 2005a, MNRAS, 364, 922.CrossRefGoogle Scholar
Abraham, Z., Falceta-Gonçalves, D., Dominici, T., Nyman, L.-A., Durouchoux, P., McAuliffe, F., Caproni, A. & Jatenco-Pereira, V. 2005b, A&A, 437, 977.Google Scholar
Bartzakos, P. Moffat, A. F. J. & Niemela, V. S. 2001, MNRAS, 324, 33.CrossRefGoogle Scholar
Damineli, A. 1996, ApJ, 460, 49.CrossRefGoogle Scholar
Falceta-Goncalves, D., Abraham, Z. & Jatenco-Pereira, V. 2005, MNRAS, 357, 895.CrossRefGoogle Scholar
Falceta-Goncalves, D., Abraham, Z. & Jatenco-Pereira, V. 2006, MNRAS, 371, 1295.CrossRefGoogle Scholar
Lamers, H. J. G. L. M. 2001, PASP, 113, 263.CrossRefGoogle Scholar
Martin, J. C., Davidson, K., Humphreys, R. M., Hillier, D. J., & Ishibashi, K. 2006, ApJ, 640, 474 CrossRefGoogle Scholar