Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T01:56:42.370Z Has data issue: false hasContentIssue false

A linear stability study of stellar rotating spheres

Published online by Cambridge University Press:  11 March 2020

Simon Rozier
Affiliation:
Institut d’Astrophysique de Paris & UPMC Univ. Paris 06 (UMR7095), 98 bis Boulevard Arago, 75014 Paris, France email: [email protected]
Jean-Baptiste Fouvry
Affiliation:
Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, United States of America
Philip G. Breen
Affiliation:
School of Mathematics & Maxwell Institute for Mathematical Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH9 3FD, UK
Anna Lisa Varri
Affiliation:
Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
Christophe Pichon
Affiliation:
Institut d’Astrophysique de Paris & UPMC Univ. Paris 06 (UMR7095), 98 bis Boulevard Arago, 75014 Paris, France email: [email protected]
Douglas C. Heggie
Affiliation:
School of Mathematics & Maxwell Institute for Mathematical Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH9 3FD, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations of globular clusters imposed major revisions to the previous paradigm, in which they were considered to be isotropic in velocity space and non-rotating. However, the theory of collisionless spheroids with some kinematic richness has seldom been studied. We present here a first step in this direction, owing to new results regarding the linear stability of rotating Plummer spheres, with varying anisotropy in velocity space and total amount of angular momentum. We extend the well-known radial orbit instability to rotating systems, and discover a new regime of instability in fast rotating, tangentially anisotropic systems.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bellini, A., Anderson, J., Bedin, L. R., King, I. R., van der Marel, R. P., Piotto, G., & Cool, A. 2017, ApJ, 842, 6CrossRefGoogle Scholar
Bianchini, P., van der Marel, R. P., del Pino, A., Watkins, L. L., Bellini, A., Fardal, M. A., Libralato, M., & Sills, A. 2018, MNRAS, 481, 2125CrossRefGoogle Scholar
Binney, J. & Tremaine, S. 2008, Galactic Dynamics: Second Edition. Princeton University PressCrossRefGoogle Scholar
Breen, P. G., et al. 2019, MNRAS, in prepGoogle Scholar
Dejonghe, H. 1987, MNRAS, 224, 13CrossRefGoogle Scholar
Hamilton, C., Fouvry, J.-B., Binney, J., & Pichon, C. 2018, MNRAS, 481, 2041CrossRefGoogle Scholar
Kalnajs, A. J. 1977, ApJ, 212, 637CrossRefGoogle Scholar
Lynden-Bell, D. 1960, MNRAS, 120, 204CrossRefGoogle Scholar
Lynden-Bell, D. 1967, MNRAS, 136, 101CrossRefGoogle Scholar
Polyachenko, V. L. & Shukhman, I. G. 1981, Soviet Ast., 25, 533Google Scholar
Rozier, S., Fouvry, J.-B., Breen, P. G., Varri, A. L., Pichon, C., & Heggie, D. C. 2019, MNRAS, 487, 711CrossRefGoogle Scholar
Saha, P. 1991, MNRAS, 248, 494CrossRefGoogle Scholar
Sollima, A., Baumgardt, H., & Hilker, M. 2019, MNRAS, 485, 1460CrossRefGoogle Scholar
Weinberg, M. D. 1991, ApJ, 368, 66CrossRefGoogle Scholar