Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T02:06:53.318Z Has data issue: false hasContentIssue false

Limits on First Structure Formation from Pulsar Timing

Published online by Cambridge University Press:  27 October 2016

R. M. Shannon*
Affiliation:
CSIRO Astronomy and Space Science, Box 76 Epping NSW 1710, Australia email: [email protected] Inernational Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6012, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By monitoring the arrival times from millisecond pulsars for years to decades, it is possible to search for, or place limits on, nanohertz frequency gravitational radiation. The most promising source of gravitational waves in this band is a stochastic background emitted from a population of supermassive black hole binaries. As these binaries are the direct product of of galaxy mergers and the properties of the SMBHs correlated strongly with their host galaxies, the gravitational wave emission of the binaries can be used to study how galaxies evolve. Here I discuss how pulsar timing can be used to search for gravitational waves, and how limits on the strength of the background are being used to challenge models of supermassive black hole formation and evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Arzoumanian, Z., et al.: The NANOGrav Collaboration 2014, ApJ, 794, 141 CrossRefGoogle Scholar
Champion, D. J., Hobbs, G. B., Manchester, R. N., et al. 2010, ApJ, 720, L201 CrossRefGoogle Scholar
Coles, W., Hobbs, G., Champion, D. J., Manchester, R. N., & Verbiest, J. P. W., 2011, MNRAS, 418, 561 CrossRefGoogle Scholar
Cordes, J. M., Shannon, R. M., & Stinebring, D. R. 2015, ApJ, submitted; arXiv:1503.08491Google Scholar
Demorest, P. B., et al. 2013, ApJ, 762, 94 CrossRefGoogle Scholar
Edwards, R. T., Hobbs, G. B., & Manchester, R. N. 2006, MNRAS, 372, 1549 CrossRefGoogle Scholar
Hobbs, G., et al. 2010, Classical Quant. Grav., 27, 084013 CrossRefGoogle Scholar
Hobbs, G., Coles, W., Manchester, R. N., et al. 2012, MNRAS, 427, 2780 CrossRefGoogle Scholar
Hobbs, G., Dai, S., Manchester, R. N., Shannon, R. M., Kerr, M., Lee, K. J., & Xu, R. 2014, Res. Astron. Astrophys., in press; arXiv:1407.0435Google Scholar
Janssen, G., Hobbs, G., McLaughlin, M., et al. 2015, “Gravitational Wave Astronomy with the SKA,” in Advancing Astrophysics with the Square Kilometre Array, Proc. Sci., eds. Bourke, T. L., et al., id 37CrossRefGoogle Scholar
Keith, M. J., Coles, W., Shannon, R. M., et al. 2013, MNRAS, 429, 2161 CrossRefGoogle Scholar
Kramer, M. & Champion, D. J. 2013, Classical Quant. Grav., 30, 224009 CrossRefGoogle Scholar
Kulier, A., Ostriker, J. P., Natarajan, P., Lackner, C. N., & Cen, R. 2015, ApJ, 799, 178 CrossRefGoogle Scholar
Lee, K. J., Bassa, C. G., Janssen, G. H., et al. 2014, MNRAS, 441, 2831 CrossRefGoogle Scholar
Lentati, L., Alexander, P., Hobson, M. P., et al. 2014, MNRAS, 437, 3004 CrossRefGoogle Scholar
Manchester, R. N., Hobbs, G., Bailes, M., et al. 2013, PASA, 30, 17 CrossRefGoogle Scholar
McWilliams, S. T., Ostriker, J. P., & Pretorius, F. 2014, ApJ, 789, 156 CrossRefGoogle Scholar
Ravi, V., Wyithe, J. S. B., Shannon, R. M., & Hobbs, G. 2015, MNRAS, 447, 2772 CrossRefGoogle Scholar
Sesana, A. 2013, MNRAS, 433, L1 CrossRefGoogle Scholar
Shannon, R. M. & Cordes, J. M. 2010, ApJ, 725, 1607 CrossRefGoogle Scholar
Shannon, R. M. & Cordes, J. M. 2012, ApJ, 761, 64 CrossRefGoogle Scholar
Shannon, R. M., Cordes, J. M., Metcalfe, T. S., et al. 2013a, ApJ, 766, 5 CrossRefGoogle Scholar
Shannon, R. M., Ravi, V., Coles, W. A., et al. 2013b, Science, 342, 334 CrossRefGoogle Scholar
Shannon, R. M., Ravi, V., Lentati, L. T., et al. 2015, Science, 349, 1522 CrossRefGoogle Scholar
van Haasteren, R., Levin, Y. 2013, MNRAS, 428, 1147 CrossRefGoogle Scholar
van Straten, W. 2004, ApJS, 152, 129 CrossRefGoogle Scholar