Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T18:22:28.187Z Has data issue: false hasContentIssue false

Life-cycles & Energetics of Radio-Loud AGN

Published online by Cambridge University Press:  07 April 2020

V. H. Mahatma
Affiliation:
Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK email: [email protected]
M. J. Hardcastle
Affiliation:
Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK email: [email protected]
W. L. Williams
Affiliation:
Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK email: [email protected]
+ LOFAR Surveys team
Affiliation:
Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radio jets are the large-scale and extragalactic footprints of accretion onto supermassive black holes, and are suggested to be the key ingredient controlling the galaxy stellar mass function. Of particular importance is their jet power - the time-averaged energetic feedback into their environment. Hence, the dynamics, energetics and life-cycles of radio-loud AGN (RLAGN) must be understood in order to build a qualitative and quantitative picture of their impact over cosmic time. Here, we present a study of the spectral age of two powerful, cluster-center radio galaxies, and compare with an analytic model to robustly determine their jet powers. We also present some recent LOFAR observations of the different phases of RLAGN activity, namely the remnant and subsequent restarting phases, which are key to understanding the dynamics of RLAGN over their total lifetime.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Brienza, M., Godfrey, L., Morganti, R., Prandoni, I., Harwood, J., Mahony, E. K., Hardcastle, M. J., Murgia, M., Röttgering, H. J. A., Shimwell, T. W., & Shulevski, A. 2017, Astronomy & Astrophysics, 606, A98CrossRefGoogle Scholar
Croton, D. J., Springel, V., White, S. D. M., De Lucia, G., Frenk, C. S., Gao, L., Jenkins, A., Kauffmann, G., Navarro, J. F., & Yoshida, N. 2006, MNRAS, 365, 1128CrossRefGoogle Scholar
Duncan et al. 2019, https://doi.org/10.1051/0004-6361/201833562CrossRefGoogle Scholar
Eilek, J. A. 1996, Astronomical Society of the Pacific Conference Series, 100, 281Google Scholar
Godfrey, L. E. H., Morganti, R., & Brienza, M. 2017, MNRAS, 471, 891CrossRefGoogle Scholar
Hardcastle, M. J., Evans, D. A., & Croston, J. H. 2007, MNRAS, 376, 1849CrossRefGoogle Scholar
Hardcastle, M. J. 2018, MNRAS, 475, 2768CrossRefGoogle Scholar
Hardcastle et al. 2019, https://doi.org/10.1051/0004-6361/201833893CrossRefGoogle Scholar
Harwood, J. J., Hardcastle, M. J., Croston, J. H., & Goodger, J. L., 2013, MNRAS, 435, 3353CrossRefGoogle Scholar
Harwood, J. J., Hardcastle, M. J., & Croston, J. H. 2015, MNRAS, 454, 3403CrossRefGoogle Scholar
Mahatma, V. H., Hardcastle, M. J., Williams, W. W.et al. 2018, MNRAS, 475, 4557CrossRefGoogle Scholar
McNamara, B. R., & Nulsen, P. E. J. 2007, Annual review of Astronomy and Astrophysics, 45, 117CrossRefGoogle Scholar
Mingo, B., Hardcastle, M. J., Croston, J. H., Dicken, D., Evans, D. A., Morganti, R., & Tadhunter, C. 2014, MNRAS, 440, 269CrossRefGoogle Scholar
Schoenmakers, A. P., de Bruyn, A. G., Röttgering, H. J. A., van der Laan, H., & Kaiser, C. R. 2000, MNRAS, 315, 371380CrossRefGoogle Scholar
Smith, D. A., Wilson, A. S., Arnaud, K. A., Terashima, Y., & Young, A. J. 2002, ApJ, 565, 195CrossRefGoogle Scholar
Williams et al. 2019, https://doi.org/10.1051/0004-6361/201833564CrossRefGoogle Scholar
Wylezalek, D., & Zakamska, N. L. 2016, MNRAS, 461, 37243739CrossRefGoogle Scholar