Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T05:51:15.979Z Has data issue: false hasContentIssue false

The life and death of star clusters

Published online by Cambridge University Press:  01 August 2006

B. C. Whitmore*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD, 21218, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is generally believed that most stars are born in groups and clusters, rather than in the field. It has also been demonstrated that merging galaxies produce large numbers of young massive star clusters, sometimes called super star clusters. Hence, understanding what triggers the formation of these young massive clusters may provide important information about what triggers the formation of stars in general. In recent years it has become apparent that most clusters do not survive more than ≈10 Myr (i.e., “infant mortality”). Hence, it is just as important to understand the disruption of star clusters as it is to understand their formation if we want to understand the demographics of both star clusters and field stars. This talk will first discuss what triggers star cluster formation in merging galaxies (primarily in the Antennae galaxies), will then demonstrate that most of the faint objects detected in the Antennae are clusters rather than individual stars (which shows that the initial mass function was a power law rather than a Gaussian), and will then outline a general framework designed to empirically fit observations of both star clusters and field stars in a wide variety of galaxies from mergers to quiescent spirals.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bruzual, A. G. & Charlot, S. 2003, MNRAS 344, 1000CrossRefGoogle Scholar
Chandar, R., Fall, S. M. & Whitmore, B. C. 2006, in pressGoogle Scholar
de Grijs, R., Parmentier, G. & Lamers, H. J. G. L. M. 2005, MNRAS 364, 1054CrossRefGoogle Scholar
Fall, S. M., Chandar, R. & Whitmore, B. C. 2005, ApJ 631, L133CrossRefGoogle Scholar
Fall, S. M. & Zhang, Q. 2001, ApJ 561, 751CrossRefGoogle Scholar
Hunter, D. A., Elmegreen, B. G., Dupuy, T. T. & Mortonson, M. 2003, AJ 126, 1836CrossRefGoogle Scholar
Jog, C. & Solomon, P. M. 1992, ApJ 387, 152CrossRefGoogle Scholar
Kumai, Y., Hashi, Y. & Fujimoto, M. 1993, ApJ 416, 576CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARAA 41, 57CrossRefGoogle Scholar
Larsen, S. S. 2002, AJ 124, 1393CrossRefGoogle Scholar
Rafelski, M. & Zaritsky, D. 2005, AJ 129, 2701CrossRefGoogle Scholar
Toomre, A. 1977, in: Tinsley, B. M. & Larson, R. B. (eds.) The Evolution of Galaxies and Stellar Populations (Yale: New Haven), p. 401Google Scholar
Walborn, N. R., Barba, R.H.Brandner, W., Rubio, M., Grebel, E. & Probst, R. 1999, AJ 117, 225CrossRefGoogle Scholar
Whitmore, B. C. 2003, in: Livio, M., Noll, K., & Stiavelli, M. (eds.), A Decade of HST Science (Cambridge:Cambridge University), p. 153Google Scholar
Whitmore, B. C. 2007, in: Livio, M. (ed.), Massive Stars: From Pop III and GRBs to the Milky Way (Cambridge: Cambridge University), in pressGoogle Scholar
Livio, M. (ed.), Massive Stars: From Pop III and GRBs to the Milky Way (Cambridge: Cambridge University), in pressCrossRefGoogle Scholar
Whitmore, B. C., Chandar, R. & Fall, S. M. 2006, AJ in pressGoogle Scholar
Whitmore, B. C., Gilmore, D., Leitherer, C., Fall, S. M., Chandar, R., Blair, W. P., Schweizer, F., Zhang, Q. & Miller, B. W. 2005, AJ 130, 2104CrossRefGoogle Scholar
Whitmore, B. C., Zhang, Q., Leitherer, C., Fall, S. M., Schweizer, F. & Miller, B. W. 1999, AJ 118, 1551CrossRefGoogle Scholar
Zhang, Q., Fall, M. & Whitmore, B. C. 2001, ApJ 561, 727CrossRefGoogle Scholar