Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T08:23:26.244Z Has data issue: false hasContentIssue false

Legacy of Charlotte Moore Sitterly in the Internet Age

Published online by Cambridge University Press:  19 March 2024

Alexander Kramida*
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most (yet not all) results of atomic physics research of Charlotte Moore Sitterly (CMS), which was closely connected to astrophysics, are now incorporated in online databases, one of which is the Atomic Spectra Database of the National Institute of Standards and Technology. The use of this database extends far beyond astrophysics, but this review focuses on astrophysical applications. The impact of CMS’s work on modern atomic physics and other sciences is discussed, and problems that urgently need solutions are outlined.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B.P., Abbott, R., Abbott, T.D., et al. 2017a, ApJL, 848, L12. doi: 10.3847/2041-8213/aa91c9 CrossRefGoogle Scholar
Abbott, B.P., Abbott, R., Abbott, T.D., et al. 2017b, PhRvL, 119, 161101. doi: 10.1103/PhysRevLett.119.161101 Google Scholar
Albert, D., Antony, B.K., Ba, Y.A., et al. 2020, Atoms, 8, 76. doi: 10.3390/atoms8040076 CrossRefGoogle Scholar
Bacher, R.F., & Goudsmit, S.A. 1931, Atomic Energy States – As Derived from the Analyses of Optical Spectra (New York: McGraw-Hill Book Co.), 562 pp.Google Scholar
Backe, H., Dretzke, A., St. Fritzsche, et al. 2005, Laser Spectroscopic Investigation of the Element Fermium (z=100), Hyperfine Interact., 162, 314. doi: 10.1007/s10751-005-9209-x CrossRefGoogle Scholar
Badnell, N., Ballance, C., Bautista, M., Burke, P., Butler, K., Chen, G.-X., Delahaye, F., Del Zanna, G., Eissner, W., Fivet, V., Hudson, C., Liang, G.-Y., Mason, H., McLaughlin, B., Mendoza, C., Montenegro, M., Nahar, S., Oelgoetz, J., Palmeri, P., Pradhan, A., Quinet, P., Ramsbottom, C., Saraph, H., Scott, P., Storey, P., Wasson, I., Withoeft, M. & Zeippen, C. 2008, The Opacity Project – The Iron Project, online at: http://cdsweb.u-strasbg.fr/topbase/op.html (accessed 4 September 2022)Google Scholar
Blaise, J., Fred, M., & Gutmacher, R.G. 1984, The Atomic Spectrum of Plutonium, Argonne National Laboratory Report ANL-83-95, 612 pp. Online at: https://inis.iaea.org/search/search.aspx?orig_q=RN:16028008 (accessed on 7 September 2022)Google Scholar
Blaise, J., Fred, M., & Gutmacher, R.G. 1986, Term Analysis of the Spectrum of Neutral Plutonium, Pu I, JOSAB, 3, 403418. doi: 10.1364/JOSAB.3.000403 CrossRefGoogle Scholar
Blaise, J., & Wyart, J.-F. 2006, Selected Constants – Energy Levels and Atomic Spectra of Actinides, online at: http://www.lac.universite-paris-saclay.fr/Data/Database/ (accessed 8 September 2022)Google Scholar
Chhetri, P., Ackermann, D., Backe, H., et al. 2018, Precision Measurement of the First Ionization Potential of Nobelium, PRL, 120, 263003. doi: 10.1103/PhysRevLett.120.263003 CrossRefGoogle ScholarPubMed
Chung, H.-K., Chen, M.H., Morgan, W.L., Ralchenko, Yu., & Lee, R.W. 2005, FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements, High Energy Density Phys. 1, 312; online at: https://nlte.nist.gov/FLY/ (accessed 5 August 2020). doi: 10.1016/j.hedp.2005.07.001 CrossRefGoogle Scholar
Clarivate Web of Science Database 2022, online at: https://www.webofscience.com/wos/woscc/basic-search (accessed on 5 September 2022)Google Scholar
Dalton, G. R., Dragoset, R.A., Fuhr, J.R., Kelleher, D.E., Kotochigova, S.A., Martin, W.C., Mohr, P.J., Musgrove, A., Olsen, K., Podobedova, L., Saloman, E.B., Sugar, J., Wiese, W.L., Stern Grant, C., Eichhorn, G., Kelly, R.L., Shirai, T., Azarov, V.I., Kramida, A.E., Ryabtsev, A.N., Blaise, J., & Wyart, J.F. 1998, in: Proc. Int. Conf. on Atomic and Molecular Data and Their Applications, NIST Spec. Publ. 926, Wiese, W.L. and Mohr, P.J. (eds.) (Washington, D.C.: U.S. Government Printing Office) 12–15; online at https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication926.pdf (accessed 4 September 2022)Google Scholar
Del Zanna, G., Young, P.R., Dere, K.P., et al. 2022, CHIANTI – An Atomic Database for Spectroscopic Diagnostics of Astrophysical Plasmas, Version 10.0.2 (George Mason University, USA; University of Michigan, USA; University of Cambridge, UK; NASA Goddard Space Flight Center, USA), online at: https://www.chiantidatabase.org/ (accessed 8 September 2022)Google Scholar
Deslattes, R.D., Kessler, E.G. Jr., Indelicato, P., et al. 2005, X-ray Transition Energies, version 1.2 (Gaithersburg, MD, USA: National Institute of Standards and Technology), online at: https://physics.nist.gov/XrayTrans (accessed 13 September 2022)Google Scholar
DeVorkin, D. 1978, Charlotte Moore Sitterly, Interview on 15 June 1978 (College Park, MD, USA: Niels Bohr Library & Archives, American Institute of Physics). Transcript is online at https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4784 (accessed 6 September, 2022)Google Scholar
Ding, M. 2022, Kilonovae and the Cosmic Origin of r-Process Elements: Atomic Structure and Processes of Gold, Talk presented at IAUS371, International Astronomical Union General Assembly, 10 August 2022, Busan, Republic of KoreaGoogle Scholar
Esmond, J.R., & Smith, P.L. 2008, Kelly (Cambridge, MA, USA: Harvard-Smithsonian Center for Astrophysics), online at: https://lweb.cfa.harvard.edu/ampcgi/kelly.pl (accessed 8 September 2022)Google Scholar
Faenov, A.Ya., Skobelev, I.Yu., Loboda, P.A., et al. 2021, Spectr-W3 Database on Spectroscopic Properties of Atoms and Ions (Russia: Russian Federal Nuclear Center – E.I. Zababakhin All-Russian Scientific Research Institute of Technical Physics, Joint Institute for High Temperatures of the Russian Academy of Sciences), online at: http://spectr-w3.snz.ru/index.phtml (accessed 8 September 2022)Google Scholar
Fivet, V., Quinet, P., Palmeri, P., et al. 2020, D.E.S.I.R.E. – DatabasE on SIxth Row Elements (Belgium: Mons University), online at: https://hosting.umons.ac.be/html/agif/databases/desire.html (accessed 9 September 2022)Google Scholar
Foster, A.R., Ji, L., Smith, R.K., et al. 2022, AtomDB – Atomic Data For Astrophysicists, Version 0.10.11 (Cambridge, MA, USA: Harvard-Smithsonian Center for Astrophysics), online at: http://www.atomdb.org/ (accessed 8 September 2022)Google Scholar
Fuhr, J.R., & Wiese, W.L. 1971, Bibliography on Atomic Transition Probabilities, July 1969 through June 1971; Natl. Bur. Stand. (U.S.), Spec. Publ. 320, Suppl. 1 (Washington, D.C.: U.S. Government Printing Office), 67 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-e647febaccfbf495ab09b180bc1f6c2e (accessed 4 September 2022)Google Scholar
Fuhr, J.R., Wiese, W.L., & Roszman, L.J. 1972, Bibliography on Atomic Line Shapes and Shifts (1889 through March 1972); Natl. Bur. Stand. (U.S.), Spec. Publ. 366 (Washington, D.C.: U.S. Government Printing Office), 154 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-76f55cc039acddfb1b667b248d65821d (accessed 4 September 2022)Google Scholar
Fuhr, J.R., & Wiese, W.L. 1973, Bibliography on Atomic Transition Probabilities, July 1971 through June 1973; Natl. Bur. Stand. (U.S.), Spec. Publ. 320, Suppl. 2 (Washington, D.C.: U.S. Government Printing Office), 63 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-0e024d314a3d917630978dafe02bddf9 (accessed 4 September 2022)Google Scholar
Fuhr, J.R., Roszman, L.J., & Wiese, W.L. 1974, Bibliography on Atomic Line Shapes and Shifts (April 1972 through June 1973); Natl. Bur. Stand. (U.S.), Spec. Publ. 366, Suppl. 1 (Washington, D.C.: U.S. Government Printing Office), 64 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-dac1747a1be070fc847e4306bd0d8bc9 (accessed 4 September 2022)Google Scholar
Fuhr, J.R., Martin, G.A., & Specht, B.J. 1975, Bibliography on Atomic Line Shapes and Shifts (July 1973 through May 1975); Natl. Bur. Stand. (U.S.), Spec. Publ. 366, Suppl. 2 (Washington, D.C.: U.S. Government Printing Office), 75 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-922f28e69edd562adb080fdc4cd39b96 (accessed 4 September 2022)Google Scholar
Fuhr, J.R., Miller, B.J., & Martin, G.A. 1978a, Bibliography on Atomic Transition Probabilities (1914 through October 1977); Natl. Bur. Stand. (U.S.), Spec. Publ. 505 (Washington, D.C.: U.S. Government Printing Office), 283 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-d5f4704857d2f3b49051e62abd7855eb (accessed 4 September 2022)Google Scholar
Fuhr, J.R., Miller, B.J., & Martin, G.A. 1978, Bibliography on Atomic Line Shapes and Shifts (June 1975 through June 1978); Natl. Bur. Stand. (U.S.), Spec. Publ. 366, Suppl. 3 (Washington, D.C.: U.S. Government Printing Office), 83 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-db619857d95d09fcbea65ebb3f6bdf26 (accessed 4 September 2022)Google Scholar
Fuhr, J.R., & Lesage, A. 1993, Bibliography on Atomic Line Shapes and Shifts (July 1978 through March 1992); Natl. Bur. Stand. (U.S.), Spec. Publ. 366, Suppl. 4 (Washington, D.C.: U.S. Government Printing Office), 288 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-f9c674871d1c31b716243a5842f677be (accessed 4 September 2022)Google Scholar
Glennon, B.M., & Wiese, W.L. 1962, Bibliography on Atomic Transition Probabilities, NBS Monograph 50 (Washington, D.C.: U.S. Government Printing Office), 42 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-c29576d6fcbe243a4b5de511dddd0bf3 (accessed 4 September 2022)Google Scholar
Glennon, B.M., & Wiese, W.L. 1966, Bibliography on Atomic Transition Probabilities, Miscellaneous Publications of NBS, No. 278 (Washington, D.C.: U.S. Government Printing Office), 92 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-d6f15603b276271eab50d3a198ce70c5 (accessed 4 September 2022)Google Scholar
Glennon, B.M., & Wiese, W.L. 1968, Bibliography on Atomic Transition Probabilities: May 1966 through December 1967, Miscellaneous Publications of NBS, No. 278, Suppl. 1 (Washington, D.C.: U.S. Government Printing Office), 43 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-b53e455e582ae3d938dece17958996cb (accessed 4 September 2022)Google Scholar
Gopka, V.F., Yushchenko, A.V., Shavrina, A.V, et al. 2005, IAUS 224, 734742. doi: 10.1017/S174392130500966X Google Scholar
Hagan, L., & Martin, W.C. 1972, Bibliography on Atomic Energy Levels and Spectra, July 1968 through June 1971, Natl. Bur. Stand. (U.S.), Spec. Publ., No. 363 (Washington, D.C.: U.S. Government Printing Office), 109 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-1ae03a8ed7da5b28ead6e4f3496b6ee5 (accessed 4 September 2022)Google Scholar
Hagan, L. 1977, Bibliography on Atomic Energy Levels and Spectra, July 1971 through June 1975, Natl. Bur. Stand. (U.S.), Spec. Publ., No. 363, Suppl. 1 (Washington, D.C.: U.S. Government Printing Office), 109 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-ccda39900c4383e6d5ae772c8765a802 (accessed 4 September 2022)Google Scholar
Haris, K., & Kramida, A. 2017, Critically Evaluated Spectral Data for Neutral Carbon (C I), ApJS 233, 16, doi: 10.3847/1538-4365/aa86ab CrossRefGoogle Scholar
Hu, J., Webb, J.K., Ayres, T.R., et al. 2021, Measuring the Fine-Structure Constant on a White Dwarf Surface; A Detailed Analysis of Fe V Absorption in G191-B2B, MNRAS, 500, 1466, doi: 10.1093/mnras/staa3066 CrossRefGoogle Scholar
Jentschura, U.D., Kotochigova, S., LeBigot, E.O., Mohr, P.J., & Taylor, B.N. 2005, The Energy Levels of Hydrogen and Deuterium (version 2.1) (Gaithersburg, MD, USA: National Institute of Standards and Technology), online at: https://physics.nist.gov/HDEL (accesses 13 September 2022)Google Scholar
Kazakov, V.V., Kazakov, V.G., Kovalev, V.S., Meshkov, O.I., & Yatsenko, A.S. 2017, Electronic Structure of Atoms Information System: Current Status and Development Trends, Optoelectron. Instrum. Data Proc. 53, 136–144, doi: 10.3103/S8756699017020054 CrossRefGoogle Scholar
Kazakov, V.V., Kazakov, V.G., Kovalev, V.S., Meshkov, O.I., & Yatsenko, A.S. 2021, Information System “Electronic Structure of Atoms” (Novosibirsk, Russia: Novosibirsk State University); online at: http://grotrian.nsu.ru/en (accessed 8 September 2022)Google Scholar
Kelly, R.L. 1987, Atomic and Ionic Spectrum Lines Below 2000 Angstroms: Hydrogen Through Krypton, J. Phys. Chem. Ref. Data 16, Suppl. 1 (Washington, DC: American Chemical Society), 1698 pp.Google Scholar
Kessler, K.G. 1988, Dr. Charlotte Moore Sitterly and the National Bureau of Standards, JOSAB, 5, 2043–2044CrossRefGoogle Scholar
Kramida, A., Ryabtsev, A.N., Vedeneeva, G.V., & Kononov, E.Ya 1987, BIBL – Bibliography Database on Atomic Spectra (Troitsk, Russia: Institute of Spectroscopy, Russian Academy of Sciences); online at: http://das101.isan.troitsk.ru/bibl.htm (accessed 29 August 2022)Google Scholar
Kramida, A.E. 2007, Spectral Data for Tungsten Atoms and Ions, W I through W LXXIV, in: Poster Papers of the 15th International Conference on Atomic Processes in Plasma (APIP-15) (Gaithersburg, MD, USA: National Institute of Standards and Technology)Google Scholar
Kramida, A. 2010a, Atomic Energy Levels and Spectra Bibliographic Database (Version 2.0) (Gaithersburg, MD, USA: National Institute of Standards and Technology), online at: https://physics.nist.gov/elevbib (accessed 31 July 2020). doi: 10.18434/T40K53 Google Scholar
Kramida, A., & Fuhr, J.R. 2010b, NIST Atomic Transition Probability Bibliographic Database (Version 9.0) (Gaithersburg, MD, USA: National Institute of Standards and Technology); online at: https://physics.nist.gov/fvalbib (accessed 31 July 2020). doi: 10.18434/T46C7N Google Scholar
Kramida, A., & Fuhr, J.R. 2010c, Atomic Line Broadening Bibliographic Database (Version 3.0) (Gaithersburg, MD, USA: National Institute of Standards and Technology), online at: https://physics.nist.gov/linebrbib (accessed 31 July 2020). doi: 10.18434/T4B59K Google Scholar
Kramida, A. 2011, Recent Developments in the NIST Atomic Databases, AIP Conf. Proc., 1344, 81–95, doi: 10.1063/1.3585808 CrossRefGoogle Scholar
Kramida, A. 2013, Critical Evaluation of Data on Atomic Energy Levels, Wavelengths, and Transition Probabilities, Fusion Sci. Technol., 63, 313323, doi: 10.13182/FST13-A16437 CrossRefGoogle Scholar
Kramida, A. 2014, Using Databases for Data Analysis in Laser Spectroscopy, in: Baudelet, M. (ed.), Laser Spectroscopy for Sensing (Cambridge, UK: Woodhead Publishing), Ch. 4, 102124. doi: 10.1533/9780857098733.1.102 CrossRefGoogle Scholar
Kramida, A., Ralchenko, Yu., Reader, J., & NIST ASD Team 2021, NIST Atomic Spectra Database (Version 5.9) (Gaithersburg, MD, USA: National Institute of Standards and Technology). Available online: https://physics.nist.gov/asd (accessed 31 July 2020). doi: 10.18434/T4W30F CrossRefGoogle Scholar
Kramida, A. 2022, Update of Atomic Data for the First Three Spectra of Actinium, Atoms, 10, 42. doi: 10.3390/atoms10020042 CrossRefGoogle ScholarPubMed
Kramida, A., & Haris, K. 2022, Critically Evaluated Spectral Data for Singly Ionized Carbon (C II), ApJS, 260, 11, doi: 10.3847/1538-4365/ac5401 CrossRefGoogle Scholar
Kurucz, R.L. 2022, Atomic and Molecular Spectra Database (Cambridge, MA, USA: Harvard-Smithsonian Center for Astrophysics), online at: http://kurucz.harvard.edu/ (accessed 4 September 2022)Google Scholar
Martin, W.C., Zalubas, R., & Hagan, L. 1978, Atomic Energy Levels – The Rare Earth Elements, Natl. Stand. Ref. Data Ser., NSRDS-NBS 60 (Washington, DC, USA: National Bureau of Standards), 422 pp.; online at: https://nvlpubs.nist.gov/nistpubs/Legacy/NSRDS/nbsnsrds60.pdf (accessed 7 September, 2022)Google Scholar
Lobel, A., Royer, P., Martayan, C., et al. 2019, The Belgian Repository of Fundamental Atomic Data and Stellar Spectra (BRASS), Atoms, 7, 105, doi: 10.3390/atoms7040105. The database is available online at: http://brass.sdf.org/ (accessed 9 September 2022)CrossRefGoogle Scholar
Martin, W.C. 1991, Physics Today, 44, 128130 10.1063/1.2810096CrossRefGoogle Scholar
Martin, W.C., Dalton, G.R., Fuhr, J.R., Kelleher, D.E., Kramida, A., Mohr, P.J., Musgrove, A., Reader, J., Saloman, E.B., Sansonetti, C.J., Sugar, J., Wiersma, G.G., Wiese, W.L., Zucker, D., Blaise, J., Wyart, J.-F., Eichhorn, G., & Grant, C.S. 1995, NIST Laboratory Program on Atomic Spectroscopic Data for Astronomy, Astron. Soc. Pac. Conf. Ser., 81, 597601; online at http://www.aspbooks.org/a/volumes/article_details?paper_id=11089 (accessed 4 September 2022)Google Scholar
Martin, W.C., & Wiese, W.L. 1996, Atomic Spectroscopy, in: Drake, G.W.F. (ed.), Atomic, Molecular, and Optical Physics Handbook (Woodbury, NY: AIP Press), p. 135–153. Online version of 2002 available at https://www.nist.gov/pml/atomic-spectroscopy-compendium-basic-ideas-notation-data-and-formulas (accessed 4 September 2022)Google Scholar
Miles, B.M., & Wiese, W.L. 1970, Bibliography on Atomic Transition Probabilities, January 1916 through June 1969, NBS Special Publication 320 (Washington, D.C.: U.S. Government Printing Office), 103 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-eb48d25bef9982034369cc0c2cbd289e (accessed 4 September 2022)Google Scholar
Miller, B.J., Fuhr, J.R., & Martin, G.A. 1980, Bibliography on Atomic Transition Probabilities (November 1977 through March 1980), Natl. Bur. Stand. (U.S.), Spec. Publ. 505, Suppl. 1, (Washington, D.C.: U.S. Government Printing Office), 121 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-fa39a1f7af6a3f993b1c573553304955 (accessed 4 September 2022)Google Scholar
Moore, C.E., & Russell, H.N. 1926, On the winged lines in the solar spectrum, ApJ, 63, 112 CrossRefGoogle Scholar
Moore, C.E. 1945, A Multiplet Table of Astrophysical Interest. Revised Edition. Part I – Table of Multiplets, Part II – Finding List of All Lines in the Table of Multiplets Contrib. Princet. Univ. Obs., 20, 206 pp.Google Scholar
Moore, C.E. 1965, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables – Si II, Si III, Si IV; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 1 (Washington, DC, USA: National Bureau of Standards), 35 pp., doi: 10.6028/NBS.NSRDS.3sec1 Google Scholar
Moore, C.E. 1967, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables – Si I; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 2 (Washington, DC, USA: National Bureau of Standards), 35 pp., doi: 10.6028/NBS.NSRDS.3sec2 CrossRefGoogle Scholar
Moore, C.E. 1968a, An Ultraviolet Multiplet Table, Sections 1 and 2, Hydrogen through Niobium (Reprint of NBS Circular 488, Sect. 1, 1950, and Sect. 2, 1952), Nat. Bur. Stand. (U.S.) Circular 488, Sections 1 and 2 (Washington, DC, USA: National Bureau of Standards), 206 pp.Google Scholar
Moore, C.E. 1968b, An Ultraviolet Multiplet Table, Sections 3, 4, and 5, Molybdenum through Radium and Finding Lists (Reprint of NBS Circular 488, Sect. 3 through 5, 1962), Nat. Bur. Stand. (U.S.) Circular 488, Sections 3, 4, and 5 (Washington, DC, USA: National Bureau of Standards), 204 pp.Google Scholar
Moore, C.E. 1968c, Bibliography on the Analyses of Optical Atomic Spectra, Natl. Bur. Stand. (U.S.), Spec. Publ. 306, Sect. 1 (Washington, DC, USA: National Bureau of Standards), 80 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-9be8dee6faff93e34a5f9400cf5ee955 (accessed 4 September 2022)Google Scholar
Moore, C.E. 1969a, Bibliography on the Analyses of Optical Atomic Spectra, Natl. Bur. Stand. (U.S.), Spec. Publ. 306, Sect. 2 (Washington, DC, USA: National Bureau of Standards), 80 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-b92934b569c8a1a04b11e99f12cf110e (accessed 4 September 2022)Google Scholar
Moore, C.E. 1969b, Bibliography on the Analyses of Optical Atomic Spectra, Natl. Bur. Stand. (U.S.), Spec. Publ. 306, Sect. 3 (Washington, DC, USA: National Bureau of Standards), 37 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-dbf501792ab238befc38e454773e683a (accessed 4 September 2022)Google Scholar
Moore, C.E. 1969c, Bibliography on the Analyses of Optical Atomic Spectra, Natl. Bur. Stand. (U.S.), Spec. Publ. 306, Sect. 4 (Washington, DC, USA: National Bureau of Standards), 48 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-ca0d2ba93161b122fe17f9332ff1feed (accessed 4 September 2022)Google Scholar
Moore, C.E. 1970, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables – C I, C II, C III, C IV, C V, C VI; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 3 (Washington, DC, USA: National Bureau of Standards), 73 pp., doi: 10.6028/NBS.NSRDS.3sec3 CrossRefGoogle Scholar
Moore, C.E. 1971a, Atomic Energy Levels as Derived from the Analysis of Optical Spectra – Hydrogen through Vanadium; Nat. Stand. Ref. Data Ser., NSRDS-NBS 35, Vol. I (Reprint of NBS Circ. 467, Vol. I, 1949) (Washington, DC, USA: National Bureau of Standards), 359 pp., doi: 10.6028/NBS.NSRDS.35v1 CrossRefGoogle Scholar
Moore, C.E. 1971b, Atomic Energy Levels as Derived from the Analysis of Optical Spectra – Chromium through Niobium; Nat. Stand. Ref. Data Ser., NSRDS-NBS 35, Vol. II (Reprint of NBS Circ. 467, Vol. II, 1952) (Washington, DC, USA: National Bureau of Standards), 230 pp., doi: 10.6028/NBS.NSRDS.35v2 CrossRefGoogle Scholar
Moore, C.E. 1971c, Atomic Energy Levels as Derived from the Analysis of Optical Spectra – Molybdenum through Lanthanum and Hafnium through Actinium; Nat. Stand. Ref. Data Ser., NSRDS-NBS 35, Vol. III (Reprint of NBS Circ. 467, Vol. III, 1958) (Washington, DC, USA: National Bureau of Standards), 245 pp., doi: 10.6028/NBS.NSRDS.35v3 CrossRefGoogle Scholar
Moore, C.E. 1971d, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables – N IV, N V, N VI, N VII; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 4 (Washington, DC, USA: National Bureau of Standards), 46 pp., doi: 10.6028/NBS.NSRDS.3sec4 CrossRefGoogle Scholar
Moore, C.E. 1972a, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables – H I, D, T, Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 6 (Washington, DC, USA: National Bureau of Standards), 32 pp., doi: 10.6028/NBS.NSRDS.3sec6 CrossRefGoogle Scholar
Moore, C.E. 1972b, A Multiplet Table of Astrophysical Interest, Revised Edition, Part I. Table of Multiplets, Part II. Finding List of All Lines in the Table of Multiplets; Nat. Stand. Ref. Data Ser., NSRDS-NBS 40 (Washington, D.C.: U.S. Government Printing Office), 261 pp., doi: 10.6028/NBS.NSRDS.40 Google Scholar
Moore, C.E. 1975, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables – N I, N II, N III; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 5 (Washington, DC, USA: National Bureau of Standards), 80 pp., doi: 10.6028/NBS.NSRDS.3sec5 CrossRefGoogle Scholar
Moore, C.E. 1976, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables – O I; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 7 (Washington, DC, USA: National Bureau of Standards), 33 pp., doi: 10.6028/NBS.NSRDS.3sec7 CrossRefGoogle Scholar
Moore, C.E. 1979, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables – O VI, O VII, O VIII; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 8 (Washington, DC, USA: National Bureau of Standards), 31 pp., doi: 10.6028/NBS.NSRDS.3sec8 CrossRefGoogle Scholar
Moore, C.E. 1980, Selected Tables of Atomic Spectra – A: Atomic Energy Levels – Second Edition, B: Multiplet Tables – O V; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 9 (Washington, DC, USA: National Bureau of Standards), 21 pp., doi: 10.6028/NBS.NSRDS.3sec9 CrossRefGoogle Scholar
Moore, C.E. 1982, Selected Tables of Atomic Spectra – A: Atomic Energy Levels – Second Edition, B: Multiplet Table – O IV; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 10 (Washington, DC, USA: National Bureau of Standards), 21 pp., doi: 10.6028/NBS.NSRDS.3sec10 CrossRefGoogle Scholar
Moore, C.E. 1985, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Table – O III; Nat. Stand. Ref. Data Ser., NSRDS-NBS 3, Sect. 11 (Washington, DC, USA: National Bureau of Standards), 33 pp., doi: 10.6028/NBS.NSRDS.3sec11 CrossRefGoogle Scholar
Moore, C.E. 1993, Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions, in: Gallagher, J.W. (ed.), CRC Series in Evaluated Data in Atomic Physics (Boca Raton, FL: CRC Press), 339 pp.Google Scholar
Musgrove, A., & Zalubas, R. 1985, Bibliography on Atomic Energy Levels and Spectra, July 1970 through December 1983, Natl. Bur. Stand. (U.S.), Spec. Publ., No. 363, Suppl. 3 (Washington, D.C.: U.S. Government Printing Office), 124 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-a2a52208e971b045b15566249246550b (accessed 4 September 2022)Google Scholar
Nave, G., Sansonetti, C.J., & Kerber, F. 2008, Atlas of the Spectrum of a Th/Ar hollow cathode lamp in the region 691 nm to 5804 nm, version 1.1 (Gaithersburg, MD, USA: National Institute of Standards and Technology), online at: https://physics.nist.gov/ThAr (accessed 13 September 2022)Google Scholar
Olsen, K., Fontes, C.J., Fryer, C.L., Hungerford, A.L., Wollaeger, R.T., Korobkin, O., & Ralchenko, Yu. 2022, NIST-LANL Lanthanide Opacity Database, version 1.1 (Gaithersburg, MD, USA: National Institute of Standards and Technology), online at: https://nlte.nist.gov/OPAC (accessed 13 September 2022). doi: 10.18434/mds2-2375 CrossRefGoogle Scholar
Paschen, F. 1919, Das Spektrum des Neon, Ann. Phys. (Leipzig), 365, 405453 CrossRefGoogle Scholar
Pinho, A.M.M., & Martins, C.J.A.P. 2016, Updated constraints on spatial variations of the fine-structure constant, PhLB, 756, 121. doi: 10.1016/j.physletb.2016.03.014 Google Scholar
Pakhomov, Yu ., Piskunov, N., & Ryabchikova, T. 2017, VALD3: Current Developments, in: Stars: from Collapse to Collapse – ASP Conference Series, Vol. 510, Yu.Yu. Balega, Kudryavtsev, D.O., Romanyuk, I.I. , and Yakunin, I.A. (eds.) (San Francisco, CA: Astron. Soc. of Pacific) 518–521; online at: http://aspbooks.org/custom/publications/paper/510-0518.html (accessed 10 September 2022)Google Scholar
Przybylski, A. 1961, HD 101065–a G0 Star with High Metal Content, Nature, 189, 739. doi: 10.1038/189739a0 CrossRefGoogle Scholar
Quinet, P., Palmeri, P., Biémont, E. 2020, D.R.E.A.M. – Database on Rare Earths At Mons University (Belgium: Mons University), online at: https://hosting.umons.ac.be/html/agif/databases/dream.html (accessed 9 September 2022)Google Scholar
Ralchenko, Yu., Fuhr, J.F., Jou, F.-C., Kramida, A.E., Martin, W.C., Podobedova, L.I., Reader, J., Saloman, E.B., Sansonetti, J.E. & Wiese, W.L. 2005, New Generation of the NIST Atomic Spectroscopic Databases, in: Kato, T., Funaba, H., & Kato, D. (eds.), Atomic and Molecular Data and their Applications, AIP Conference Proceedings 771 (Melville, NY: AIP Press), 276285. doi: 10.1063/1.1944716 Google Scholar
Ralchenko, Yu. 2006a, A Guide to Internet Atomic Databases for Hot Plasmas, JQSRT, 99, 499510. doi: 10.1016/j.jqsrt.2005.05.040 CrossRefGoogle Scholar
Ralchenko, Yu. 2006b, NIST SAHA Plasma Kinetics Database, version 1.0 (Gaithersburg, MD, USA: National Institute of Standards and Technology), online at: https://nlte.nist.gov/SAHA (accessed 13 September 2022)Google Scholar
Ralchenko, Yu. 2022, NIST-LANL Lanthanide Opacity Database, Talk presented at IAUS371, International Astronomical Union General Assembly, 9 August 2022, Busan, Republic of KoreaGoogle Scholar
Reader, J., Corliss, C.H., Wiese, W.L., & Martin, G. A. 1980, Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part. I. Wavelengths, Part II. Transition Probabilities, Nat. Stand. Ref. Data Ser., NSRDS-NBS 68 (Washington, D.C.: U.S. Government Printing Office), 415 pp. doi: 10.6028/NBS.NSRDS.68 CrossRefGoogle Scholar
Reader, J. 2006, Critical Compilation of Wavelengths and Energy Levels for Atoms and Atomic Ions, J. Plasma Fusion Res. Series, 7, 327330 Google Scholar
Redman, S.L., Nave, G., & Sansonetti, C.J. 2014, The Spectrum of Thorium from 250 nm to 5500 nm: Ritz Wavelengths and Optimized Energy Levels, ApJS, 211, 4. doi: 10.1088/0067-0049/211/1/4 CrossRefGoogle Scholar
Remijan, A.J., Markwick-Kemper, A.J., Brogan, C., Turner, B., Williams, S. & Wootten, A. 2020, Splatalogue Database for Astronomical Spectroscopy, v. 3.0, online at: https://splatalogue.online// (accessed 4 September 2022)Google Scholar
Rixon, G., Dubernet, M.L., Piskunov, N., et al. 2011, VAMDC – The Virtual Atomic and Molecular Data Centre – A New Way to Disseminate Atomic and Molecular Data – VAMDC Level 1 Release, AIP Conf. Proc., 1344, 107115. doi: 10.1063/1.3585810 CrossRefGoogle Scholar
Rubin, V.C. 2010, Charlotte Moore Sitterly, Journal of Astronomical History and Heritage, 13, 145148; online at: https://adsabs.harvard.edu/pdf/2010JAHH…13.145R CrossRefGoogle Scholar
Russell, H.N., & Saunders, F.A. 1925, New Regularities in the Spectra of the Alkaline Earths, ApJ, 61, 3869 CrossRefGoogle Scholar
Ryabchikova, T.A., Piskunov, N.E., Pakhomov, Yu.V., et al. 2022, Vienna Atomic Line Database (VALD3), Version 3448 (Uppsala University, Sweden; Institute of Astronomy RAS, Moscow, Russia; University of Vienna, Austria), online at: http://vald.astro.uu.se/vald/php/vald.php (accessed 8 September 2022)Google Scholar
Sansonetti, J.E., Reader, J., Sansonetti, C.J., Acquista, N., Sansonetti, A.M., & Dragoset, R.A. 2003, Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130–4330 Å, version 1.2 (Gaithersburg, MD, USA: Institute of Standards and Technology), online at: https://physics.nist.gov/platinum (accessed 13 September 2002)Google Scholar
Sansonetti, J.E., & Martin, W.C. 2005, Handbook of Basic Atomic Spectroscopic Data, J. Phys. Chem. Ref. Data, 34, 15592259; online at: https://physics.nist.gov/handbook (accessed 4 September 2022).CrossRefGoogle Scholar
Suplee, C., & Kramida, A. 2012, Uses and Users of NIST’s Atomic Spectra Database, NIST News Dec. 19; online at https://www.nist.gov/news-events/news/2012/12/uses-and-users-nists-atomic-spectra-database (accessed 4 September 2022)Google Scholar
VAMDC, Consortium 2022, VAMDC Portal, online at: https://portal.vamdc.org/vamdc_portal/home.seam (accessed 10 September 2022)Google Scholar
van Hoof, P. (2010), The Atomic Line List v3.00b4, online at: https://www.pa.uky.edu/peter/newpage/ (accessed 4 September 2022)Google Scholar
Verner, D.A. 2000, Energy Levels, Wavelengths, Transition Probabilities, online at: http://www.pa.uky.edu/verner/lines.html (accessed 4 September 2022)Google Scholar
Wang, K., Si, R., Dang, W., et al. 2016, Calculations with Spectroscopic Accuracy: Energies and Transition Rates in the Nitrogen Isoelectronic Sequence from Ar XII to Zn XXIV, ApJS, 223, 3. doi: 10.3847/0067-0049/223/1/3 CrossRefGoogle Scholar
Webb, J.K., King, J.A., Murphy, M.T., Flambaum, V.V., et al. 2011, Indications of a Spatial Variation of the Fine Structure Constant, PRL, 107, 191101. doi: 10.1103/PhysRevLett.107.191101 CrossRefGoogle ScholarPubMed
Wiese, W.L. 1996, The Critical Assessment of Atomic Oscillator Strengths, Phys. Scr., T65, 188191, doi: 10.1088/0031-8949/1996/T65/028 CrossRefGoogle Scholar
Wilczynska, M.R., Webb, J.K., Bainbridge, M., et al. 2020, Four Direct Measurements of the Fine-Structure Constant 13 Billion Years Ago, SciA, 6, eaay9672. doi: 10.1126/sciadv.aay9672 CrossRefGoogle Scholar
Wu, Y., Yan, J. et al. 2022, Atomic & Molecular Database (CAMDB) (Beijing, China: Institute of Applied Physics and Computational Mathematics), online at: http://www.camdb.ac.cn/e/ (accessed 8 September 2022)Google Scholar
Wyart, J.-F. 1973, Classification des spectres d’arc et d’étincelle du dysprosium. Contribution a l’étude de configurations électroniques dans d’autres spectres des terres rares, Ph.D. Thesis, Univ. Paris-Sud, Orsay, France, 262 pp. Online at: http://www.lac.universite-paris-saclay.fr/Data/Theses/PDFTHESES/W/100-WYART%20J.F.%20(1973).pdf http://www.lac.universite-paris-saclay.fr/Data/Theses/PDFTHESES/W/100-WYART http://www.lac.universite-paris-saclay.fr/Data/Theses/PDFTHESES/W/100-WYART%20J.F.%20(1973).pdf%20J.F.%20(1973).pdf (accessed 8 September 2022)Google Scholar
Zalubas, R., & Albright, A. 1980, Bibliography on Atomic Energy Levels and Spectra, July 1975 through June 1979, Natl. Bur. Stand. (U.S.), Spec. Publ., No. 363, Suppl. 2 (Washington, D.C.: U.S. Government Printing Office), 124 pp.; online at: https://www.govinfo.gov/app/details/GOVPUB-C13-782c32b310e0b22bce571d625660a27c (accessed 4 September 2022)Google Scholar