Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T11:38:09.783Z Has data issue: false hasContentIssue false

Learn from every mistake! Hierarchical information combination in astronomy

Published online by Cambridge University Press:  30 May 2017

Maria Süveges
Affiliation:
Dept. of Astronomy, University of Geneva, Ch. d'Ecogia 16, 1290 Versoix, Switzerland
Sotiria Fotopoulou
Affiliation:
Dept. of Astronomy, University of Geneva, Ch. d'Ecogia 16, 1290 Versoix, Switzerland
Jean Coupon
Affiliation:
Dept. of Astronomy, University of Geneva, Ch. d'Ecogia 16, 1290 Versoix, Switzerland
Stéphane Paltani
Affiliation:
Dept. of Astronomy, University of Geneva, Ch. d'Ecogia 16, 1290 Versoix, Switzerland
Laurent Eyer
Affiliation:
Dept. of Astronomy, University of Geneva, Ch. des Maillettes 51, 1290 Versoix, Switzerland
Lorenzo Rimoldini
Affiliation:
Dept. of Astronomy, University of Geneva, Ch. d'Ecogia 16, 1290 Versoix, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout the processing and analysis of survey data, a ubiquitous issue nowadays is that we are spoilt for choice when we need to select a methodology for some of its steps. The alternative methods usually fail and excel in different data regions, and have various advantages and drawbacks, so a combination that unites the strengths of all while suppressing the weaknesses is desirable. We propose to use a two-level hierarchy of learners. Its first level consists of training and applying the possible base methods on the first part of a known set. At the second level, we feed the output probability distributions from all base methods to a second learner trained on the remaining known objects. Using classification of variable stars and photometric redshift estimation as examples, we show that the hierarchical combination is capable of achieving general improvement over averaging-type combination methods, correcting systematics present in all base methods, is easy to train and apply, and thus, it is a promising tool in the astronomical “Big Data” era.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bielby, R., Hudelot, P., McCracken, H. J., et al. 2012, A&A, 545, A23 Google Scholar
Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503 CrossRefGoogle Scholar
Breiman, L. 2001, Machine Learning, 45, 5 CrossRefGoogle Scholar
Carliles, S., Budavári, T., Heinis, S., Priebe, C., & Szalay, A. S. 2010, ApJ, 712, 511 CrossRefGoogle Scholar
Carrasco Kind, M. & Brunner, R. J. 2014a, MNRAS, 442, 3380 CrossRefGoogle Scholar
Carrasco Kind, M. & Brunner, R. J. 2014b, MNRAS, 438, 3409 CrossRefGoogle Scholar
Carrasco Kind, M. & Brunner, R. J. 2014c, MNRAS, 441, 3550 CrossRefGoogle Scholar
Dahlen, T., Mobasher, B., Faber, S. M., et al. 2013, ApJ, 775, 93 CrossRefGoogle Scholar
Devine, T. R., Goseva-Popstojanova, K., & McLaughlin, M. 2016, MNRAS, 459, 1519 CrossRefGoogle Scholar
Eyer, L. et al. 2016, A&A, submittedGoogle Scholar
Dubath, P., Rimoldini, L., Süveges, M., et al. 2011, MNRAS, 414, 2602 CrossRefGoogle Scholar
European Space Agency. 1997, The Hipparcos and Tycho catalogues (ESA SP-1200)Google Scholar
Goldstein, D. A., D’Andrea, C. B., Fischer, J. A., et al. 2015, AJ, 150, 82 CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. 2009, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. (Springer-Verlag, New York), e-book: http://www-stat.stanford.edu/~tibs/ElemStatLearn/ CrossRefGoogle Scholar
Hoyle, B. 2016, Astronomy and Computing, 16, 34 CrossRefGoogle Scholar
Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, A&A, 457, 841 Google Scholar
Le Fèvre, O., Cassata, P., Cucciati, O., et al. 2013, A&A, 559, A14 Google Scholar
Le Fèvre, O., Vettolani, G., Garilli, B., et al. 2005, A&A, 439, 845 Google Scholar
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323 Google Scholar
Rimoldini, L., Dubath, P., Süveges, M., et al. 2012, MNRAS, 427, 2917 CrossRefGoogle Scholar
Tramacere, A., Paraficz, D., Dubath, P., Kneib, J.-P., & Courbin, F. 2016, MNRAS, 463, 2939 CrossRefGoogle Scholar
Wolpert, D. H. 1992, Neural networks, 5, 241 CrossRefGoogle Scholar