Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T06:00:20.148Z Has data issue: false hasContentIssue false

Large-scale transport of solar and stellar magnetic flux

Published online by Cambridge University Press:  03 March 2020

Emre Işık*
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, 37077, Göttingen, Germany Feza Gürsey Center for Physics and Mathematics, Boğaziçi University, 34684 Istanbul, Turkey email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Surface flux transport (SFT) models have been successful in reproducing how magnetic flux at the solar photosphere evolves on large scales. SFT modelling proved to be useful in reconstructing secular irradiance variations of the Sun, and it can be potentially used in forward modelling of brightness variations of Sun-like stars. We outline our current understanding of solar and stellar SFT processes, and suggest that nesting of activity can play an important role in shaping large-scale patterns of magnetic fields and brightness variability.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Cameron, R. H., Schmitt, D., Jiang, J., Işk, E. 2012, A&A 542, A127 Google Scholar
Cameron, R. H. & Schüssler, M. 2012, A&A, 548, A57 Google Scholar
Cameron, R. H., Dasi-Espuig, M., Jiang, J., Işk, E., Schmitt, D., Schüssler, M. 2013, A&A 557, A141 Google Scholar
Dasi-Espuig, M., Jiang, J., Krivova, N. A., Solanki, S. K., Unruh, Y. C., Yeo, K. L. 2016, A&A 590, A63 Google Scholar
Holzwarth, V., Mackay, D. H., & Jardine, M. 2006, MNRAS, 369, 1703 CrossRefGoogle Scholar
Işk, E., Schüssler, M., & Solanki, S. K. 2007, A&A, 464, 1049 Google Scholar
Işk, E., Schmitt, D., & Schüssler, M. 2011, A&A, 528, A135 Google Scholar
Işk, E., Solanki, S. K., Krivova, N. A., Shapiro, A. I. 2018, A&A, in press, arXiv:1810.06728Google Scholar
Jiang, J., Işk, E., Cameron, R. H., Schmitt, D., Schüssler, M. 2010, ApJ, 717, 597 CrossRefGoogle Scholar
Jiang, J., Cameron, R. H., Schmitt, D., Schüssler, M. 2011, A&A, 528, A83 Google Scholar
Jiang, J., Hathaway, D. H., Cameron, R. H., Solanki, S.K., Gizon, L., Upton, L. 2014a, Space Sci. Revs. 186, 491 CrossRefGoogle Scholar
Jiang, J., Cameron, R. H., & Schüssler, M. 2014b, ApJ 791, 5 CrossRefGoogle Scholar
Jiang, J., Cameron, R. H., & Schüssler, M. 2015, ApJ (Letters), 808, L28 Google Scholar
Lehmann, L. T., Jardine, M. M., Mackay, D. H., Vidotto, A. A. 2018, MNRAS, 478, 4390 Google Scholar
Leighton, R. B. 1964, ApJ 140, 1547 CrossRefGoogle Scholar
Mackay, D. H., & Yeates, A. R. 2012, Living Reviews in Solar Physics 9, 6 CrossRefGoogle Scholar
Muñoz-Jaramillo, A., Nandy, D., Martens, P. C. H., Yeates, A. R. 2010, ApJ (Letters), 720, L20 Google Scholar
Nandy, D., Bhowmik, P., Yeates, A. R., Panda, S., Tarafder, R., Dash, S. 2018, ApJ, 853, 72 Google Scholar
Schrijver, C. J. 2001, ApJ, 547, 475 CrossRefGoogle Scholar
Wang, Y.-M. 2014, Space Sci. Revs., 186, 387 CrossRefGoogle Scholar