Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:05:36.492Z Has data issue: false hasContentIssue false

Lagrangian descriptors and their applications to deterministic chaos

Published online by Cambridge University Press:  16 October 2024

Jérôme Daquin*
Affiliation:
Department of Mathematics and naXys, Namur Institute for Complex Systems, University of Namur, Rue Grafé 2, B5000 Namur, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present our recent contributions to the theory of Lagrangian descriptors for discriminating ordered and deterministic chaotic trajectories. The class of Lagrangian descriptors we are dealing with is based on the Euclidean length of the orbit over a finite time window. The framework is free of tangent vector dynamics and is valid for both discrete and continuous dynamical systems. We review its last advancements and touch on how it illuminated recently Dvorak’s quantities based on maximal extent of trajectories’ observables, as traditionally computed in planetary dynamics.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Banks, J., Dragan, V., & Jones, A. 2003., Chaos: a mathematical introduction, volume 18. Cambridge University Press.CrossRefGoogle Scholar
Daquin, J. & Charalambous, C. 2023, Detection of separatrices and chaotic seas based on orbit amplitudes. Celestial Mechanics and Dynamical Astronomy, 135(3), 118.CrossRefGoogle Scholar
Daquin, J., Pédenon-Orlanducci, M., Agaoglou, M., Garcia-Sanchez, G., & Mancho, A. M. 2022, Global dynamics visualisation from Lagrangian Descriptors. Applications to discrete and continuous systems. Physica D: Nonlinear Phenomena, 442, 133520.CrossRefGoogle Scholar
Dvorak, R., Pilat-Lohinger, E., Schwarz, R., & Freistetter, F. 2004, Extrasolar Trojan planets close to habitable zones. Astronomy & Astrophysics, 426(2), L37L40.CrossRefGoogle Scholar
Hillebrand, M., Zimper, S., Ngapasare, A., Katsanikas, M., Wiggins, S. R., & Skokos, C. 2022,. Quantifying chaos using Lagrangian descriptors.CrossRefGoogle Scholar
Laskar, J. 1993, Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Physica D: Nonlinear Phenomena, 67(1-3), 257281.CrossRefGoogle Scholar
Madrid, J. J. & Mancho, A. M. 2009, Distinguished trajectories in time dependent vector fields. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(1), 013111.CrossRefGoogle ScholarPubMed
Mancho, A., Wiggins, S., Curbelo, J., & Mendoza, C. 2013, Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems. Commun Nonlinear Sci Numer Simulat, 18, 35303557.CrossRefGoogle Scholar
May, R. M. 1976, Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459467.CrossRefGoogle ScholarPubMed
Mendoza, C. & Mancho, A. 2010, Hidden geometry of ocean flows. Physical review letters, 105(3), 038501.CrossRefGoogle ScholarPubMed
Mundel, R., Fredj, E., Gildor, H., & Rom-Kedar, V. 2014, New Lagrangian diagnostics for characterizing fluid flow mixing. Physics of Fluids, 26(12), 126602.CrossRefGoogle Scholar
Pédenon-Orlanducci, R., Carletti, T., Lemaitre, A., & Daquin, J. 2022,. Geometric parametrisation of Lagrangian Descriptors for 1 degree-of-freedom systems.CrossRefGoogle Scholar
Sándor, Z., Süli, Á., Érdi, B., Pilat-Lohinger, E., & Dvorak, R. 2007, A stability catalogue of the habitable zones in extrasolar planetary systems. Monthly Notices of the Royal Astronomical Society, 375(4), 14951502.CrossRefGoogle Scholar
Zimper, S., Ngapasare, A., Hillebrand, M., Katsanikas, M., Wiggins, S. R., & Skokos, C. 2023, Performance of chaos diagnostics based on Lagrangian descriptors. Application to the 4D standard map. Physica D: Nonlinear Phenomena, 453, 133833.CrossRefGoogle Scholar