Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T07:35:22.049Z Has data issue: false hasContentIssue false

Laboratory Simulations of Physico-chemical Processes under Interstellar Conditions

Published online by Cambridge University Press:  05 March 2015

Guillermo M. Muñoz Caro*
Affiliation:
Center of Astrobiology (INTA-CSIC), Ctra. de Ajalvir km 5, Torrejón de Ardoz, Madrid, Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The accretion and desorption of gas molecules on cold dust grains play an important role in the evolution of dense clouds and circumstellar regions around YSOs. Some of the gas molecules detected in interstellar clouds were likely synthesized in icy dust grains and ejected to the gas. But in dark cloud interiors, with temperatures as low as 10–20 K, thermal desorption is negligible and a non-thermal mechanism like ice photodesorption is required. Reactions in the ice matrix are driven by energetic processing such as photon and ion irradiation. In circumstellar regions the photon flux (UV and X-rays) is expected to be significantly higher than in dense cloud interiors, icy grain mantles present in the outer parts will experience significant irradiation. The produced radicals lead to the formation of new species in the ice, some of them of prebiotic interest. Laboratory simulations of these processes are required for their understanding. The new ultra-high vacuum set-ups introduce some important improvements.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bertin, M., Fayolle, E. C., Romanzin, C., Öberg, K. I., Michaut, X., Moudens, A., Philippe, L., Jeseck, P., Linnartz, H., & Fillion, J.-H. 2012, PCCP 14, 9929CrossRefGoogle Scholar
Ciaravella, A., Jiménez-Escobar, A., Muñoz Caro, G. M., Cecchi-Pestellini, C., Candia, R., Giarrusso, S., Barbera, M., & Collura, A. 2012, ApJ (Letters) 746, L1Google Scholar
Ciaravella, A., Muñoz Caro, G. M., Jiménez-Escobar, A., Cecchi-Pestellini, C., Giarrusso, S., Barbera, M., & Collura, A. 2010, ApJ (Letters) 722, L45CrossRefGoogle Scholar
Fayolle, E. C., Bertin, M., Romanzin, C., Michaut, X., Öberg, K. I., Linnartz, H., & Fillion, J.-H. 2011, ApJ (Letters) 739, L36CrossRefGoogle Scholar
Jiménez-Escobar, A., Muñoz Caro, G. M., Ciaravella, A., Cecchi-Pestellini, C., Candia, R., & Micela, G. 2012, ApJ (Letters) 751, L40Google Scholar
Muñoz Caro, G. M., Jiménez-Escobar, A., Martín-Gago, J. Á., Rogero, C., Atienza, C., Puertas, S., Sobrado, J. M., & Torres-Redondo, J. 2010, A&A 522, 108Google Scholar
Öberg, K. I., Fuchs, G. W., Awad, Z., Fraser, H. J., Schlemmer, S., van Dishoeck, E. F., & Linnartz, H. 2007, ApJ (Letters) 662, L23Google Scholar
Öberg, K. I., van Dishoeck, E. F., & Linnartz, H. 2009, A&A 496, 281Google Scholar