Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T23:16:29.988Z Has data issue: false hasContentIssue false

Laboratory investigations aimed at building a database for the interpretation of JWST spectra

Published online by Cambridge University Press:  12 October 2020

Maria Elisabetta Palumbo
Affiliation:
INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy email: [email protected]
Giuseppe A. Baratta
Affiliation:
INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy email: [email protected]
Gleb Fedoseev
Affiliation:
INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy email: [email protected]
Daniele Fulvio
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, 22451-900 Rio de Janeiro, RJ, Brazil email: [email protected]
Carlotta Scirè
Affiliation:
INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy email: [email protected]
Giovanni Strazzulla
Affiliation:
INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy email: [email protected]
Riccardo Giovanni Urso
Affiliation:
Institut d’Astrophysique Spatiale, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay Cedex, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The James Webb Space Telescope (JWST) is expected to be launched in 2021. The JWST’s science instruments will provide high quality spectra acquired in the line of sight to young stellar objects whose interpretation will require a robust database of laboratory data. With this in mind, an experimental work is in progress in the Laboratory for Experimental Astrophysics in Catania to study the profile (shape, width, and peak position) of the main infrared bands of molecular species expected to be present in icy grain mantles. Our study also takes into account the modifications induced on icy samples by low-energy cosmic ray bombardment and by thermal processing. Here we present some recent results on deuterium hydrogen monoxide (HDO), N-bearing species, and carbon dioxide (CO2).

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

Present address: Laboratory for Astrophysics, Leiden Observatory, PO Box 9513, 2300 RA Leiden, the Netherlands

References

Allamandola, L. J., Sandford, S. A., & Tielens, A. G. G. M. 1992, ApJ, 399, 134 CrossRefGoogle Scholar
Aikawa, Y., Kamuro, D., Sakon, I., et al. 2012 A&A, 538, A57 Google Scholar
Baratta, G. A., Chaput, D., Cottin, H., Fernandez Cascales, L., Palumbo, M. E., & Strazzulla, G. 2015, Pl. Sp. Sci., 118, 211 10.1016/j.pss.2015.08.011CrossRefGoogle Scholar
Baratta, G. A. & Palumbo, M. E. 1998, J. Opt. Soc. Am. A, 15, 3076 CrossRefGoogle Scholar
Baratta, G. A. & Palumbo, G. A. 2017, A&A, 608, A81 Google Scholar
Boogert, A. C. A., Schutte, W. A., Helmich, F. P., Tielens, A. G. G. M., & Wooden, D. H. 1997, A&A, 317, 929 Google Scholar
Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541 10.1146/annurev-astro-082214-122348CrossRefGoogle Scholar
Charnley, S. B., Rodgers, S. D., & Ehrenfreund, P. 2001, A&A, 378, 1024 Google Scholar
Congiu, E., Fedoseev, G., Ioppolo, S., et al. 2012, ApJL, 750, L12 10.1088/2041-8205/750/1/L12CrossRefGoogle Scholar
Cooke, I. R., Fayolle, E. C., & Öberg, K. I. 2016, ApJ, 832, 5 CrossRefGoogle Scholar
Dartois, E., Thi, W.-F., Geballe, T. R., Deboffle, D., d’Hendecourt, L., & van Dischoeck, E. F. 2003, A&A, 399, 1009 Google Scholar
Fedoseev, G., Scirè, C., Baratta, G. A., & Palumbo, M. E. 2018, MNRAS, 475, 1819 10.1093/mnras/stx3302CrossRefGoogle Scholar
Fulvio, D., Baratta, G. A., Sivaraman, B., Mason, N. J., da Silveira, E. F., de Barros, A. L. F., Pandoli, O, Strazzulla, G., & Palumbo, M. E. 2019, MNRAS, 483, 381 Google Scholar
Gerakines, P. A., Whittet, D. C. B., Ehrenfreund, P., et al. 1999, ApJ 522, 357 CrossRefGoogle Scholar
Gerakines, P. A. & Hudson, R. L. 2015, ApJL, 808, L40 10.1088/2041-8205/808/2/L40CrossRefGoogle Scholar
Gómez Castaño, J. A., Fantoni, A., & Romano, R. M. 2008, J. Molec. Struct., 881, 68 CrossRefGoogle Scholar
Isokoski, K., Poteet, C. A., & Linnartz, H. 2013 A&A 555, A85 Google Scholar
Minissale, M., Fedoseev, G., Congiu, E., Ioppolo, S., Dulieu, F., & Linnartz, H. 2014, PCCP, 16, 8257 10.1039/C3CP54917HCrossRefGoogle Scholar
Palumbo, M. E., Ferini, G., & Baratta, G. A. 2004, Adv. Sp. Res., 33, 49.10.1016/j.asr.2003.03.002CrossRefGoogle Scholar
Sandford, S. A. & Allamandola, L. J. 1990, ApJ, 355, 357 CrossRefGoogle Scholar
Scirè, C., Urso, R. G., Fulvio, D., Baratta, G. A., & Palumbo, M. E. 2019, Spectr. Acta A, 219, 288 10.1016/j.saa.2019.04.021CrossRefGoogle Scholar
Sicilia, D., Ioppolo, S., Vindigni, T., Baratta, G. A., & Palumbo, M. E. 2012, A&A, 543, A155 Google Scholar
Teixeira, T. C., Devlin, J. P., Buch, V., & Emerson, J. P., 1999, A&A (Letters), 347, L19 Google Scholar
Urso, R. G., Scirè, C., Baratta, G. A., Compagnini, G., & Palumbo, M. E. 2016, A&A, 594, A80 Google Scholar
Urso, R. G., Palumbo, M. E., Baratta, G. A., Scirè, C., & Strazzulla, G. 2018, MNRAS, 470, 130 Google Scholar