Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T18:17:16.642Z Has data issue: false hasContentIssue false

Laboratory Electronic Spectra of Carbon Chains and Rings

Published online by Cambridge University Press:  21 February 2014

L. N. Zack
Affiliation:
Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland email: [email protected]
J. P. Maier
Affiliation:
Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carriers of the diffuse interstellar bands (DIBs) cannot be definitively identified without laboratory spectra. Several techniques, including matrix isolation, cavity ringdown spectroscopy, resonance enhanced multiphoton ionization, and ion trapping, have been used to measure the electronic spectra of carbon chains and their derivatives. The gas-phase laboratory spectra could then be compared to the astronomical data of known DIBs. The choice of molecules studied in the gas phase depends on the presence of strong electronic transitions at optical wavelengths, the lifetimes of excited electronic states, and chemical feasibility in diffuse astrophysical environments. Collisional-radiative rate models have also be used in conjunction with laboratory spectra to predict absorption profiles under interstellar conditions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Achkasova, E., Araki, M., Densiov, A., & Maier, J. P. 2006, J. Mol. Spectrosc., 237, 70Google Scholar
Bernstein, L. S., Clark, F. O., & Lynch, D. K. 2013, ApJ, 768, 84Google Scholar
Boguslavskiy, A. E. & Maier, J. P. 2006, J. Chem. Phys., 125, 094308Google Scholar
Cernicharo, J., Cox, P., Fossé, D., & Güsten, R. 1999, A&A, 351, 341Google Scholar
Chakrabarty, S., Rice, C. A., Mazzotti, F. J., Dietsche, R., & Maier, J. P. 2013, J. Phys. Chem. A, DOI:10.1021/jp312294fGoogle Scholar
Douglas, A. E. 1977, Nature, 269, 130Google Scholar
Foing, B. H. & Ehrenfreund, P. 1994, Nature, 369, 296Google Scholar
Fulara, J., Jakobi, M., & Maier, J. P. 1993, Chem. Phys. Lett., 211, 227Google Scholar
Hodges, J. A., McMahon, R. J., Sattelmeyer, K. W., & Stanton, J. F. 2000, ApJ, 544, 838Google Scholar
Jochnowitz, E. B. & Maier, J. P. 2008a, Mol. Phys., 106, 2093Google Scholar
Jochnowitz, E. B. & Maier, J. P. 2008b, Annu. Rev. Phys. Chem., 59, 519Google Scholar
Krełowski, J., Beletsky, Y., Galazutdinov, G. A., Kołos, R., Gronowski, M., & LoCurto, G. 2010, ApJ (Letters), 714, L64Google Scholar
Liszt, H., Sonnentrucker, P., Cordiner, M., & Gerin, M. 2012, ApJ (Letters), 753, L28Google Scholar
Maier, J. P., Lakin, N. M., Walker, G. A. H., & Bohlender, D. A. 2001, ApJ, 553, 267CrossRefGoogle Scholar
Maier, J. P., Walker, G. A. H., & Bohlender, D. A. 2002, ApJ, 566, 332CrossRefGoogle Scholar
Maier, J. P., Boguslavskiy, A. E., Ding, H., Walker, G. A. H., & Bohlender, D. A. 2006, ApJ, 640, 369Google Scholar
Maier, J. P., Walker, G. A. H., Bohlender, D. A., Mazzotti, F. J., Raghunandan, R., Fulara, J., Garkusha, I., & Nagy, A. 2011a, ApJ, 726, 41CrossRefGoogle Scholar
Maier, J. P., Chakrabarty, S., Mazzotti, F. J., Rice, C. A., Dietsche, R., Walker, G. A. H., & Bohlender, D. A. 2011b, ApJ (Letters), 729, L20CrossRefGoogle Scholar
McCall, B. J., York, D. G., & Oka, T. 2000, ApJ, 531, 329CrossRefGoogle Scholar
McCall, B. J., Oka, T., Thorburn, J., Hobbs, L. M., & York, D. G. 2002, ApJ, 567, L145Google Scholar
Morse, M. D. & Maier, J. P. 2011, ApJ, 732, 103Google Scholar
Motylewski, T., Linnartz, H., Vaizert, O., Maier, J. P., Galazutdinov, G. A., Musaev, F., Krełowski, J., Walker, G. A. H., & Bohlender, D. A. 2000, ApJ, 531, 312Google Scholar
Nagarajan, R. & Maier, J. P. 2010, Int. Rev. Phys. Chem., 29, 521CrossRefGoogle Scholar
Oka, T. & McCall, B. J. 2011, Science, 331, 293CrossRefGoogle Scholar
Rice, C. A., Rudnev, V., Dietsche, R., & Maier, J. P. 2010, AJ, 140, 203Google Scholar
Sarre, P. J., Miles, J. R., Kerr, T. H., Hibbins, R. E., Fossey, S. J., & Somerville, W. B. 1995, MNRAS, 277, L41Google Scholar
Stanton, J. F., Garand, E., Kim, J., Yacovitch, T. I., Hock, C., Case, A. S., Miller, E., Lu, Y-.J., Vogelhuber, K. M., Wren, S., Ichino, T., Maier, J. P., McMahon, R., Osborn, D. L., Neumark, D., & Lineberger, W. C. 2012, J. Chem. Phys., 136, 134312CrossRefGoogle Scholar
Wyss, M., Grutter, M., & Maier, J. P. 1999, Chem. Phys. Lett., 304, 35Google Scholar