Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:54:08.180Z Has data issue: false hasContentIssue false

Laboratory astrophysics for the interpretation of stellar spectra

Published online by Cambridge University Press:  12 October 2020

Ulrike Heiter*
Affiliation:
Observational Astrophysics, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-resolution stellar spectra are important tools for studying the chemical evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Large amounts of data have been accumulating, in particular in the optical and infrared wavelength regions. The observed spectral lines are interpreted using model spectra that are calculated based on transition data for numerous species, in particular neutral and singly ionized atoms. We rely heavily on the continuous activities of laboratory astrophysics groups that produce high-quality experimental and theoretical atomic data for the relevant transitions. We give examples for the precision with which the chemical composition of stars observed by different surveys can be determined, and discuss future needs from laboratory astrophysics.

Type
Contributed Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of International Astronomical Union

Footnotes

and the Gaia-ESO line list group (Karin Lind, Maria Bergemann, Martin Asplund, Paul S. Barklem, Šarunas Mikolaitis, Thomas Masseron, Patrick de Laverny, Laura Magrini, Juliet C. Pickering et al.)

References

Barklem, P. S. 2016, A&A Rev., 24, 9 Google Scholar
Barklem, P. S., Nahar, S., Pickering, J., Przybilla, N., & Ryabchikova, T. 2018, Transactions of the IAU, Vol. XXXA, https://www.iau.org/static/science/scientific_bodies/working_ groups/275/wg-hass-triennial-report-2015-2018.pdfGoogle Scholar
Buder, S., Asplund, M., Duong, L., et al. 2018, MNRAS, 478, 4513 CrossRefGoogle Scholar
De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., et al. 2015, MNRAS, 449, 2604 CrossRefGoogle Scholar
Dubernet, M. L., Antony, B. K., Ba, Y. A., et al. 2016, J. Phys. B: At. Molec. Phys., 49, 074003 CrossRefGoogle Scholar
Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25 Google Scholar
Hinkle, K., Wallace, L., Valenti, J., & Harmer, D. 2000, Visible and Near Infrared Atlas of the Arcturus Spectrum 3727-9300 A (San Francisco: A SP) ISBN: 1-58381-037-4.Google Scholar
Holtzman, J. A., Hasselquist, S., Shetrone, M., et al. 2018, AJ, 156, 125 CrossRefGoogle Scholar
Holtzman, J. A., Shetrone, M., Johnson, J. A., et al. 2015, AJ, 150, 148 CrossRefGoogle Scholar
Jofré, P., Heiter, U., Soubiran, C., et al. 2015, A&A, 582, A81 Google Scholar
Jönsson, H., Allende Prieto, C., Holtzman, J. A., et al. 2018, AJ, 156, 126 CrossRefGoogle Scholar
Kramida, A., Ralchenko, Yu., Reader, J., & and NIST ASD Team. 2018, NIST Atomic Spectra Database (ver. 5.6), [Online]. Available: https://physics.nist.gov/asd [Tue Oct 09 2018]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: 10.18434/T4W30F CrossRefGoogle Scholar
Lanzafame, A. C., Frasca, A., Damiani, F., et al. 2015, A&A, 576, A80 Google Scholar
Lindgren, S. & Heiter, U. 2017, A&A, 604, A97 Google Scholar
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94 CrossRefGoogle Scholar
Mészáros, S., Martell, S. L., Shetrone, M., et al. 2015, AJ, 149, 153 CrossRefGoogle Scholar
Mikolaitis, Š., Hill, V., Recio-Blanco, A., et al. 2014, A&A, 572, A33 Google Scholar
Passegger, V. M., Reiners, A., Jeffers, S. V., et al. 2018, A&A, 615, A6 Google Scholar
Randich, S., Gilmore, G., & Gaia-ESO Consortium. 2013, The Messenger, 154, 47 Google Scholar
Ryabchikova, T., Piskunov, N., Kurucz, R. L., et al. 2015, Phys. Scr, 90, 054005 CrossRefGoogle Scholar
Sahal-Bréchot, S., Dimitrijević, M. S., Moreau, N., & Nessib, N. B. 2017, in American Institute of Physics Conference Series, Vol. 1811, Atomic Processes in Plasmas (APiP 2016), 030003Google Scholar
Shetrone, M., Bizyaev, D., Lawler, J. E., et al. 2015, ApJS, 221, 24 CrossRefGoogle Scholar
Smiljanic, R., Korn, A. J., Bergemann, M., et al. 2014, A&A, 570, A122 Google Scholar