Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T12:47:09.207Z Has data issue: false hasContentIssue false

Kinematics of the parsec-scale jet of the blazar AO 0235+164

Published online by Cambridge University Press:  29 March 2021

Flávio Benevenuto da Silva Junior
Affiliation:
Núcleo de Astrof sica, Universidade Cidade de São Paulo, R. Galvão Bueno 868, Liberdade, São Paulo, SP, 01506-000, Brazil email: [email protected]
Anderson Caproni
Affiliation:
Núcleo de Astrof sica, Universidade Cidade de São Paulo, R. Galvão Bueno 868, Liberdade, São Paulo, SP, 01506-000, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radio interferometric maps of the blazar AO 0235+164 show the existence of a stationary core, and a compact jet composed of multiple receding components. In this work, we determined the structural characteristics of these jet components (core-component distance, position angle, flux density, etc.) using the statistical method for global optimization Cross-Entropy (CE). The images we analyzed were extracted from public databases, totaling 41 images at 15 GHz and 128 images at 43 GHz. Using criteria such as the value of the CE merit function, and mean residuals, we determined the optimum number of components in each map analyzed in this work. We found that jet components are distributed across all four quadrants on the plane of the sky, indicating a possible non-fixed jet orientation during the monitoring interval. The time evolution of the equatorial coordinates of the jet components were used to determine their respective speeds, ejection epochs, and mean position angles on the plane of the sky. We have identified more than 20 components in the jet of AO 0235+164, with their apparent speeds ranging roughly from 2c to 40c, and distributed across all four quadrants on the plane of the sky. From the kinematics of these jet components we could derive a lower limit of about 39 for its bulk jet Lorentz factor and an upper limit of approximately 42 degrees for its jet viewing angle.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Ackermann, M. 2012, ApJ, 751, 159 CrossRefGoogle Scholar
Caproni, A., Monteiro, H., Abraham, Z., et al. 2009, MNRAS, 399, 1415 CrossRefGoogle Scholar
Caproni, A., Tosta e Melo, I., Abraham, Z., et al. 2014, MNRAS, 441, 187 CrossRefGoogle Scholar
Caproni, A., Abraham, Z., Motter, J. C., et al. 2017, ApJL, 851, L39 CrossRefGoogle Scholar
Chu, H. S., Baath, L. B., Rantakyroe, F. T., et al. 1996, A&A, 307, 15 Google Scholar
Cohen, R. D., Smith, H. E., Junkkarinen, V. T., et al. 1987, ApJ, 318, 577 CrossRefGoogle Scholar
Jorstad, S. G., Marscher, A. P., Mattox, J. R., et al. 2001, ApJS, 134, 181 CrossRefGoogle Scholar
Jorstad, S. G. & Marscher, A. P. 2016, Galaxies, 4, 47 10.3390/galaxies4040047CrossRefGoogle Scholar
Jorstad, S. G., Marscher, A. P., Morozova, D. A., et al. 2017, ApJ, 846, 98 CrossRefGoogle Scholar
Kutkin, A. M., Pashchenko, I. N., Lisakov, M. M., et al. 2018, MNRAS, 475, 4994 CrossRefGoogle Scholar
Lee, S., Lobanov, A. P., Krichbaum, T. P., et al. 2008, ApJ, 136, 159 CrossRefGoogle Scholar
Lister, M. L., Aller, H. D., Aller, M. F., et al. 2009, AJ, 137, 3718 CrossRefGoogle Scholar
Raiteri, C. M., Villata, M., Larionov, V. M., et al. 2008, A&A, 480, 339 Google Scholar
Rubinstein, R. Y. 1997, European Journal of Operational Research, 99, 89 CrossRefGoogle Scholar
Volv́ach, A. E., Larionov, M. G., Volv́ach, L. N., et al. 2015, Astronomy Reports, 59, 145 CrossRefGoogle Scholar
Zhang, F. J., Chen, Y. J., Zhu, H. S., et al. 1998, Chin. Astron. Astrophys., 22, 138 10.1016/S0275-1062(98)00020-4CrossRefGoogle Scholar