Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T18:36:55.528Z Has data issue: false hasContentIssue false

Kinematical evolution of Globular Clusters

Published online by Cambridge University Press:  11 March 2020

Maria A. Tiongco
Affiliation:
Department of Astronomy, Indiana University, 727 E 3rd St, Bloomington, IN47405, USA email: [email protected]
Enrico Vesperini
Affiliation:
Department of Astronomy, Indiana University, 727 E 3rd St, Bloomington, IN47405, USA email: [email protected]
Anna Lisa Varri
Affiliation:
Institute for Astronomy, University of Edinburgh, Royal Observatory Blackford Hill, EdinburghEH9 3HJ, UK Department of Astronomy, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present several results of the study of the evolution of globular clusters’ internal kinematics, as driven by two-body relaxation and the interplay between internal angular momentum and the external Galactic tidal field. Via a large suite of N-body simulations, we explored the three-dimensional velocity space of tidally perturbed clusters, by characterizing their degree of velocity dispersion anisotropy and their rotational properties. These studies have shown that a cluster’s kinematical properties contain distinct imprints of the cluster’s initial structural properties, dynamical history, and tidal environment. Building on this fundamental understanding, we then studied the dynamics of multiple stellar populations in globular clusters, with attention to the largely unexplored role of angular momentum.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bekki, K. 2011, MNRAS, 412, 2241CrossRefGoogle Scholar
Bellazzini, M., Bragaglia, A., Carretta, E., et al. 2012, A&A, 538, A18Google Scholar
Bellini, A., Bianchini, P., Varri, A. L., et al. 2017, ApJ, 844, 167CrossRefGoogle Scholar
Bianchini, P., van der Marel, R. P., del Pino, A., et al. 2018, MNRAS, 481, 2125CrossRefGoogle Scholar
Boberg, O. M., Vesperini, E., Friel, E. D., et al. 2017, ApJ, 841, 114CrossRefGoogle Scholar
Cordero, M. J., Hénault-Brunet, V., Pilachowski, C. A., et al. 2017, MNRAS, 465, 3515CrossRefGoogle Scholar
Cordoni, G., Milone, A. P., Mastrobuono-Battisti, A., et al. 2019, arXiv e-prints, arXiv:1905.09908Google Scholar
Fabricius, M. H., Noyola, E., Rukdee, S., et al. 2014, ApJL, 787, L26CrossRefGoogle Scholar
Kamann, S., Husser, T.-O., Dreizler, S., et al. 2018, MNRAS, 473, 5591CrossRefGoogle Scholar
Keenan, D. W. & Innanen, K. A. 1975, AJ, 80, 290CrossRefGoogle Scholar
Libralato, M., Bellini, A., Piotto, G., et al. 2019, ApJL, 873, 109CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., Mastrobuono-Battisti, A., et al. 2018, MNRAS, 479, 5005CrossRefGoogle Scholar
Nitadori, K. & Aarseth, S. J. 2012, MNRAS, 424, 545CrossRefGoogle Scholar
Sollima, A., Baumgardt, H., & Hilker, M. 2019, MNRAS, 485, 1460CrossRefGoogle Scholar
Tiongco, M. A., Vesperini, E., & Varri, A. L. 2016a, MNRAS, 455, 3693CrossRefGoogle Scholar
Tiongco, M. A., Vesperini, E., & Varri, A. L. 2016b, MNRAS, 461, 402CrossRefGoogle Scholar
Tiongco, M. A., Vesperini, E., & Varri, A. L. 2017, MNRAS, 469, 683Google Scholar
Tiongco, M. A., Vesperini, E., & Varri, A. L. 2018, MNRAS, 475, L86CrossRefGoogle Scholar
Tiongco, M. A., Vesperini, E., & Varri, A. L. 2019, MNRAS, 487, 5535CrossRefGoogle Scholar
Watkins, L. L., van der Marel, R. P., Bellini, A., et al. 2015, ApJL, 803, 29CrossRefGoogle Scholar