Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-21T23:26:39.509Z Has data issue: false hasContentIssue false

The JWST/NIRSpec GTO programme “The Physics of Galaxy Assembly: IFS observations of high-z galaxies”

Published online by Cambridge University Press:  09 June 2023

Michele Perna*
Affiliation:
Centro de Astrobiología, (CAB, CSIC–INTA), Departamento de Astrof sica, Cra. de Ajalvir Km. 4, 28850 – Torrejón de Ardoz, Madrid, Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an overview of the project “The Physics of Galaxy Assembly: IFS observations of high-z galaxies”, a Guaranteed Time Observations (GTO) programme of the James Webb Space Telescope (JWST). It an ambitious project aimed at investigating the internal structure of distant galaxies with the NIRSpec integral field spectrograph (IFS), having allocated 273 hours of JWST prime time. The NIRSpec capability will provide us with spatially resolved spectroscopy in the 1-5 μm range of a sample of over forty galaxies and Active Galactic Nuclei in the redshift range 3 < z < 9. IFS observations of individual galaxies will enable us to investigate in detail the most important physical processes driving galaxy evolution across the cosmic epoch. More in detail, the main specific objectives are: to trace the distribution of star formation, to map the resolved properties of the stellar populations, to trace the gas kinematics (i.e. velocity fields, velocity dispersion) and, hence, determine dynamical masses and also identify non-virial motions (outflow and inflows), and to map metallicity gradients and dust attenuation.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Brinchmann, J. 2022, MNRAS, arXiv:2208.07467Google Scholar
Böker, T., Arribas, S., Lützgendorf, N., & Zeidler, P. 2022, A&A, 661, 82 Google Scholar
Curti, M., D’Eugenio, F., Carniani, S., & Wallace, I., E., B. 2022, MNRAS, arXiv:2207.12375Google Scholar
Ferruit, P., Jakobsen, P., Giardino, G., & Zeidler, P. 2022, A&A, 661, 81 Google Scholar
Förster Schreiber, N. M. & Wuyts, Stijn, 2020 ARA&A, 58, 661 Google Scholar
Jakobsen, P., Ferruit, P., Alves de Oliveira, C., & Zincke, C. 2022, A&A, 661, 80 Google Scholar
Pontoppidan, K. M., Barrientes, J., Blome, C., & Nota, A. 2022, ApJ, 936, 14 10.3847/2041-8213/ac8a4eCrossRefGoogle Scholar
Robertson, Brant E. 2022, ARA&A, 20, 121 Google Scholar
Tacchella, S., Johnson, B. D., Robertson, B. E., & Witstok, J. 2022, MNRAS, arXiv:2208.03281Google Scholar